6.1-predict_expereince_sampling.ipynb 271 KB
Newer Older
Hao Ting Wang's avatar
Hao Ting Wang committed
1 2 3 4 5 6
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
Hao Ting Wang's avatar
quiet  
Hao Ting Wang committed
7
   "outputs": [],
Hao Ting Wang's avatar
Hao Ting Wang committed
8
   "source": [
Hao Ting Wang's avatar
quiet  
Hao Ting Wang committed
9
    "cd -q ~/TaskSCCA_craddock/"
Hao Ting Wang's avatar
Hao Ting Wang committed
10 11 12 13
   ]
  },
  {
   "cell_type": "code",
Hao-Ting's avatar
Hao-Ting committed
14
   "execution_count": 2,
Hao Ting Wang's avatar
Hao Ting Wang committed
15 16 17
   "metadata": {},
   "outputs": [],
   "source": [
Hao-Ting Wang's avatar
update  
Hao-Ting Wang committed
18 19
    "import matplotlib.pyplot as plt\n",
    "\n",
Hao Ting Wang's avatar
Hao Ting Wang committed
20 21 22 23 24
    "import pickle\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import seaborn as sns\n",
    "\n",
Hao-Ting's avatar
Hao-Ting committed
25
    "from src.utils import unflatten, save_pkl, load_pkl, is_outliers, imputedata\n",
Hao Ting Wang's avatar
Hao Ting Wang committed
26 27 28 29
    "\n",
    "from statsmodels.multivariate.manova import MANOVA\n",
    "from scipy.stats import zscore\n",
    "\n",
Hao-Ting Wang's avatar
update  
Hao-Ting Wang committed
30 31
    "import statsmodels.api as sm\n",
    "import statsmodels.formula.api as smf\n",
32
    "\n",
Hao-Ting's avatar
Hao-Ting committed
33
    "sns.set_style({\"font.sans-serif\": [\"Arial\"]})\n",
34
    "sns.set_context('paper', font_scale=1.5)"
Hao Ting Wang's avatar
Hao Ting Wang committed
35 36
   ]
  },
Hao-Ting's avatar
Hao-Ting committed
37 38 39 40 41 42 43 44 45
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "from statsmodels.stats.multitest import multipletests"
   ]
  },
Hao-Ting Wang's avatar
update  
Hao-Ting Wang committed
46 47 48 49 50 51 52
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Prepare data"
   ]
  },
Hao Ting Wang's avatar
Hao Ting Wang committed
53 54
  {
   "cell_type": "code",
Hao-Ting's avatar
Hao-Ting committed
55
   "execution_count": 4,
Hao Ting Wang's avatar
Hao Ting Wang committed
56 57 58 59 60 61 62 63 64 65 66
   "metadata": {},
   "outputs": [],
   "source": [
    "X_clean = np.load('data/processed/X_clean.npy')\n",
    "Y_clean = np.load('data/processed/Y_clean.npy')\n",
    "sig_mod = load_pkl('models/sig_95th.pkl')\n",
    "model = load_pkl('models/full_model_95th.pkl')\n",
    "\n",
    "path_master = 'data/interim/df_master_p178.pkl'\n",
    "df_master = pd.read_pickle(path_master)\n",
    "\n",
Hao-Ting Wang's avatar
update  
Hao-Ting Wang committed
67 68
    "df_es = pd.read_pickle('./data/interim/CS_MWQ_prepro.pkl')\n",
    "\n",
Hao Ting Wang's avatar
Hao Ting Wang committed
69 70 71 72 73 74
    "sig = sig_mod['sig']\n",
    "X_scores, Y_scores = model.transform(X_clean, Y_clean)\n",
    "X_scores, Y_scores = X_scores[:, sig], Y_scores[:, sig]\n",
    "cca_df = pd.DataFrame({'Functional connectivity 1': X_scores[:, 0], \n",
    "                       'Functional connectivity 2': X_scores[:, 1],\n",
    "                       'Cognitive task 1': Y_scores[:, 0], \n",
Hao-Ting Wang's avatar
update  
Hao-Ting Wang committed
75 76
    "                       'Cognitive task 2': Y_scores[:, 1],})\n",
    "\n",
Hao Ting Wang's avatar
Hao Ting Wang committed
77 78 79
    "df_cca = pd.DataFrame(zscore(X_scores) + zscore(Y_scores), \n",
    "                      columns=['component_1', 'component_2'], \n",
    "                      index=df_master.index)\n",
Hao-Ting's avatar
Hao-Ting committed
80
    "df_es_pca = df_master.iloc[:, 18:30].infer_objects()"
Hao Ting Wang's avatar
Hao Ting Wang committed
81 82
   ]
  },
Hao-Ting's avatar
Hao-Ting committed
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[0.56570486 0.58651279]\n"
     ]
    }
   ],
   "source": [
    "print(sig_mod['can_corr'])"
   ]
  },
Hao Ting Wang's avatar
Hao Ting Wang committed
100
  {
Hao-Ting's avatar
Hao-Ting committed
101
   "cell_type": "code",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[0.036 0.011]\n"
     ]
    }
   ],
   "source": [
    "print(sig_mod['p_val'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
Hao-Ting's avatar
Hao-Ting committed
120 121
   "metadata": {},
   "outputs": [],
Hao-Ting's avatar
Hao-Ting committed
122 123 124 125
   "source": [
    "df_es = pd.read_pickle('./data/interim/CS_MWQ_prepro.pkl').infer_objects()\n",
    "df_es_mean = df_es.pivot_table(index=['RIDNO'],\n",
    "                               values=df_es.columns[3:],\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
126
    "                               aggfunc=np.mean).apply(zscore)"
Hao-Ting's avatar
Hao-Ting committed
127 128 129 130
   ]
  },
  {
   "cell_type": "code",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
131
   "execution_count": 7,
Hao-Ting's avatar
Hao-Ting committed
132 133
   "metadata": {},
   "outputs": [],
Hao-Ting's avatar
Hao-Ting committed
134 135 136
   "source": [
    "df_es['nBack'].astype(str)\n",
    "df_es_bytask = df_es.pivot_table(index=['RIDNO', 'nBack'],\n",
Hao-Ting's avatar
Hao-Ting committed
137
    "                                 values=df_es.columns[3:],\n",
Hao-Ting's avatar
Hao-Ting committed
138 139 140 141 142 143
    "                                 aggfunc=np.mean).apply(zscore)\n",
    "df_es_bytask = df_es_bytask.unstack()"
   ]
  },
  {
   "cell_type": "code",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
144
   "execution_count": 8,
Hao Ting Wang's avatar
Hao Ting Wang committed
145
   "metadata": {},
Hao-Ting's avatar
Hao-Ting committed
146
   "outputs": [],
Hao Ting Wang's avatar
Hao Ting Wang committed
147
   "source": [
Hao-Ting's avatar
Hao-Ting committed
148
    "# USE THIS FOR STATS IN THE NOTEBOOK\n",
Hao-Ting's avatar
Hao-Ting committed
149
    "df_stats = pd.concat([df_es_mean, df_es_bytask, df_cca], axis=1, join='inner')"
Hao Ting Wang's avatar
Hao Ting Wang committed
150 151
   ]
  },
Hao-Ting's avatar
Hao-Ting committed
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "18.0"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.min(df_master.AGE)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
Hao-Ting's avatar
Hao-Ting committed
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
   "metadata": {},
   "outputs": [],
   "source": [
    "oneback = []\n",
    "zeroback = []\n",
    "new_col = []\n",
    "for col in df_stats.columns[13: -2]:\n",
    "    new_col.append(col[0] + '_' + str(int(col[1])))\n",
    "    if float(col[1]) == 1:\n",
    "        oneback.append(col[0] + '_' + str(int(col[1])))\n",
    "    else:\n",
    "        zeroback.append(col[0] + '_' + str(int(col[1])))\n",
    "\n",
    "es = df_stats.columns[:13].tolist()\n",
    "new_col = es + new_col + ['component_1', 'component_2']\n",
    "df_stats.columns = new_col"
   ]
  },
  {
   "cell_type": "code",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
195
   "execution_count": 11,
Hao-Ting's avatar
Hao-Ting committed
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['MWQ_Deliberate',\n",
       " 'MWQ_Detailed',\n",
       " 'MWQ_Emotion',\n",
       " 'MWQ_Evolving',\n",
       " 'MWQ_Focus',\n",
       " 'MWQ_Future',\n",
       " 'MWQ_Habit',\n",
       " 'MWQ_Images',\n",
       " 'MWQ_Other',\n",
       " 'MWQ_Past',\n",
       " 'MWQ_Self',\n",
       " 'MWQ_Vivid',\n",
       " 'MWQ_Words']"
      ]
     },
Hao-Ting Wang's avatar
Hao-Ting Wang committed
216
     "execution_count": 11,
Hao-Ting's avatar
Hao-Ting committed
217 218 219 220 221 222 223 224 225 226
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "es"
   ]
  },
  {
   "cell_type": "code",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
227
   "execution_count": 12,
Hao-Ting's avatar
Hao-Ting committed
228 229 230 231 232 233 234 235 236 237 238 239 240
   "metadata": {},
   "outputs": [],
   "source": [
    "diff_labels = []\n",
    "for e in es:\n",
    "    diff_labels.append(e + '_diff')\n",
    "\n",
    "df_diff = pd.DataFrame(df_stats[oneback].values - df_stats[zeroback].values, index=df_stats.index, columns=diff_labels)\n",
    "df_stats = pd.concat([df_diff, df_stats], axis=1, join='inner')"
   ]
  },
  {
   "cell_type": "code",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
241
   "execution_count": 13,
Hao-Ting's avatar
Hao-Ting committed
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
   "metadata": {},
   "outputs": [],
   "source": [
    "def MANOVA_with_fig(endog_labels, filename):\n",
    "    manova = MANOVA(endog=df_stats[endog_labels],\n",
    "                exog=df_stats[['component_1', 'component_2']] )\n",
    "    \n",
    "    print(manova.mv_test())\n",
    "    results = manova.mv_test().results\n",
    "    sig_key = []\n",
    "\n",
    "    for key, (_, output) in zip(manova.mv_test().exog_names, results.items()):\n",
    "        p_val = output['stat']['Pr > F'][0]\n",
    "        key = (' ').join(key.split('_'))\n",
    "        if  p_val < 0.05:\n",
    "            sig_key.append((key, p_val))\n",
    "            \n",
    "    if len(sig_key) == 0:\n",
    "        sig_key.append(('None', 'N/A'))\n",
    "    \n",
    "    df_coef = pd.DataFrame()\n",
    "    df_pval = pd.DataFrame()\n",
    "\n",
    "    for q in endog_labels:\n",
    "        univeriate = smf.ols(formula='{} ~ component_1 + component_2'.format(q), data=df_stats).fit()\n",
Hao-Ting's avatar
Hao-Ting committed
267
    "        print(univeriate.summary())\n",
Hao-Ting's avatar
Hao-Ting committed
268 269 270 271 272 273 274 275
    "        p_adjust = multipletests(univeriate.pvalues, alpha=0.05, method='bonferroni')\n",
    "        df_coef = df_coef.append(univeriate.params, ignore_index=True)\n",
    "        df_p_adjust = pd.DataFrame(np.array([p_adjust[0],\n",
    "                                             p_adjust[1]]).T, \n",
    "                                   index=['Intercept', '1', '2'],\n",
    "                                   columns=['Sig.', 'p_adjusted']\n",
    "                                  )\n",
    "        df_pval = df_pval.append(df_p_adjust.iloc[:, 1], ignore_index=True)\n",
Hao-Ting's avatar
Hao-Ting committed
276 277 278
    "        print(df_p_adjust)\n",
    "        print('Bonferroni corrected alpha (0.05): {}\\n'.format(\n",
    "            multipletests(univeriate.pvalues, alpha=0.05, method='bonferroni')[-1]))\n",
Hao-Ting's avatar
Hao-Ting committed
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
    "    \n",
    "    df_coef.index = [a.split('_')[-1] for a in es]\n",
    "    df_pval.index = df_coef.index\n",
    "\n",
    "    df_coef.columns = ['Intercept', '1', '2']\n",
    "\n",
    "\n",
    "    sns.heatmap(df_coef.iloc[:, 1:], cmap=\"PiYG_r\", square=False, center=0, annot=df_pval.iloc[:, :-1])\n",
    "    plt.title('Full univariate results')\n",
    "    plt.annotate('''\n",
    "    * Value in each cell is Bonferroni corrected p-value.\n",
    "    ** {:} is significant at multivatiate level.\n",
    "       p = {:}'''.format(sig_key[0][0], sig_key[0][1]), \n",
    "                 (0,0), (0, -30), \n",
    "                 xycoords='axes fraction', \n",
    "                 textcoords='offset points', va='top')\n",
    "    plt.tight_layout()\n",
    "    plt.savefig(filename, dpi=300, transparent=True)\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
297
    "    return df_coef"
Hao-Ting's avatar
Hao-Ting committed
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Predict thoguhts with CCA components\n",
    "\n",
    "When using the two CCA scores to predict the expereince sampling questions scores, component 2 is significant in all the mutivariate models of all the questions, 0-back or 1-back questions. The difference score of 0-back and 1-back, however, didn't show significant relationships in the MANOVA. See bellow to find the detailed MANOVA tables and the correlation coefficients and Bonferroni adjusted p-values of the univariate model in heat map format.\n",
    "\n",
    "When predicting PCA scores, there's no significant results at the multivariate level."
   ]
  },
  {
   "cell_type": "markdown",
Hao Ting Wang's avatar
Hao Ting Wang committed
313
   "metadata": {},
Hao-Ting's avatar
Hao-Ting committed
314 315 316 317 318 319
   "source": [
    "## MANOVA: average experience sampling scores"
   ]
  },
  {
   "cell_type": "code",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
320
   "execution_count": 14,
Hao-Ting's avatar
Hao-Ting committed
321
   "metadata": {
Hao-Ting Wang's avatar
Hao-Ting Wang committed
322
    "scrolled": true
Hao-Ting's avatar
Hao-Ting committed
323
   },
Hao Ting Wang's avatar
Hao Ting Wang committed
324 325 326 327 328 329
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "                  Multivariate linear model\n",
Hao-Ting's avatar
Hao-Ting committed
330 331 332 333 334
      "==============================================================\n",
      "                                                              \n",
      "--------------------------------------------------------------\n",
      "           x0           Value   Num DF  Den DF  F Value Pr > F\n",
      "--------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
335 336 337 338
      "          Wilks' lambda 0.9518 13.0000 164.0000  0.6390 0.8186\n",
      "         Pillai's trace 0.0482 13.0000 164.0000  0.6390 0.8186\n",
      " Hotelling-Lawley trace 0.0506 13.0000 164.0000  0.6390 0.8186\n",
      "    Roy's greatest root 0.0506 13.0000 164.0000  0.6390 0.8186\n",
Hao-Ting's avatar
Hao-Ting committed
339 340 341 342 343
      "--------------------------------------------------------------\n",
      "                                                              \n",
      "--------------------------------------------------------------\n",
      "           x1           Value   Num DF  Den DF  F Value Pr > F\n",
      "--------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
344 345 346 347
      "          Wilks' lambda 0.8147 13.0000 164.0000  2.8694 0.0009\n",
      "         Pillai's trace 0.1853 13.0000 164.0000  2.8694 0.0009\n",
      " Hotelling-Lawley trace 0.2275 13.0000 164.0000  2.8694 0.0009\n",
      "    Roy's greatest root 0.2275 13.0000 164.0000  2.8694 0.0009\n",
Hao-Ting's avatar
Hao-Ting committed
348
      "==============================================================\n",
Hao-Ting's avatar
Hao-Ting committed
349 350 351
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
352
      "Dep. Variable:         MWQ_Deliberate   R-squared:                       0.007\n",
Hao-Ting's avatar
Hao-Ting committed
353
      "Model:                            OLS   Adj. R-squared:                 -0.004\n",
Hao-Ting's avatar
Hao-Ting committed
354
      "Method:                 Least Squares   F-statistic:                    0.6159\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
355 356
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.541\n",
      "Time:                        11:22:00   Log-Likelihood:                -250.70\n",
Hao-Ting's avatar
Hao-Ting committed
357 358
      "No. Observations:                 178   AIC:                             507.4\n",
      "Df Residuals:                     175   BIC:                             516.9\n",
Hao-Ting's avatar
Hao-Ting committed
359 360 361 362 363
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
364 365 366
      "Intercept       0.0047      0.075      0.063      0.950      -0.143       0.152\n",
      "component_1    -0.0138      0.042     -0.327      0.744      -0.097       0.070\n",
      "component_2    -0.0440      0.042     -1.047      0.297      -0.127       0.039\n",
Hao-Ting's avatar
Hao-Ting committed
367
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
368 369 370 371
      "Omnibus:                        3.950   Durbin-Watson:                   2.120\n",
      "Prob(Omnibus):                  0.139   Jarque-Bera (JB):                4.473\n",
      "Skew:                           0.128   Prob(JB):                        0.107\n",
      "Kurtosis:                       3.733   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
372 373 374 375 376 377 378
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0    1.000000\n",
      "1           0.0    1.000000\n",
Hao-Ting's avatar
Hao-Ting committed
379
      "2           0.0    0.890013\n",
Hao-Ting's avatar
Hao-Ting committed
380 381 382 383
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
384 385 386
      "Dep. Variable:           MWQ_Detailed   R-squared:                       0.043\n",
      "Model:                            OLS   Adj. R-squared:                  0.032\n",
      "Method:                 Least Squares   F-statistic:                     3.968\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
387 388
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):             0.0206\n",
      "Time:                        11:22:00   Log-Likelihood:                -254.25\n",
Hao-Ting's avatar
Hao-Ting committed
389 390
      "No. Observations:                 178   AIC:                             514.5\n",
      "Df Residuals:                     175   BIC:                             524.1\n",
Hao-Ting's avatar
Hao-Ting committed
391 392 393 394 395
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
396 397 398
      "Intercept       0.0098      0.076      0.129      0.898      -0.141       0.160\n",
      "component_1    -0.0608      0.043     -1.409      0.161      -0.146       0.024\n",
      "component_2    -0.1021      0.043     -2.381      0.018      -0.187      -0.017\n",
Hao-Ting's avatar
Hao-Ting committed
399
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
400 401 402 403
      "Omnibus:                        1.395   Durbin-Watson:                   2.029\n",
      "Prob(Omnibus):                  0.498   Jarque-Bera (JB):                1.244\n",
      "Skew:                          -0.033   Prob(JB):                        0.537\n",
      "Kurtosis:                       2.596   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
404 405 406 407 408 409
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0    1.000000\n",
Hao-Ting's avatar
Hao-Ting committed
410 411
      "1           0.0    0.481532\n",
      "2           0.0    0.054961\n",
Hao-Ting's avatar
Hao-Ting committed
412 413 414 415
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
416 417 418
      "Dep. Variable:            MWQ_Emotion   R-squared:                       0.006\n",
      "Model:                            OLS   Adj. R-squared:                 -0.005\n",
      "Method:                 Least Squares   F-statistic:                    0.5309\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
419 420
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.589\n",
      "Time:                        11:22:00   Log-Likelihood:                -245.02\n",
Hao-Ting's avatar
Hao-Ting committed
421 422
      "No. Observations:                 178   AIC:                             496.0\n",
      "Df Residuals:                     175   BIC:                             505.6\n",
Hao-Ting's avatar
Hao-Ting committed
423 424 425 426 427
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
428 429 430
      "Intercept      -0.0903      0.072     -1.246      0.214      -0.233       0.053\n",
      "component_1    -0.0188      0.041     -0.459      0.647      -0.100       0.062\n",
      "component_2     0.0383      0.041      0.940      0.348      -0.042       0.119\n",
Hao-Ting's avatar
Hao-Ting committed
431
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
432 433 434 435
      "Omnibus:                        3.980   Durbin-Watson:                   1.421\n",
      "Prob(Omnibus):                  0.137   Jarque-Bera (JB):                3.605\n",
      "Skew:                           0.338   Prob(JB):                        0.165\n",
      "Kurtosis:                       3.168   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
436 437 438 439 440
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
Hao-Ting's avatar
Hao-Ting committed
441
      "Intercept   0.0    0.642938\n",
Hao-Ting's avatar
Hao-Ting committed
442 443 444 445 446 447
      "1           0.0    1.000000\n",
      "2           0.0    1.000000\n",
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
448
      "Dep. Variable:           MWQ_Evolving   R-squared:                       0.006\n",
Hao-Ting's avatar
Hao-Ting committed
449
      "Model:                            OLS   Adj. R-squared:                 -0.005\n",
Hao-Ting's avatar
Hao-Ting committed
450
      "Method:                 Least Squares   F-statistic:                    0.5182\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
451 452
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.596\n",
      "Time:                        11:22:00   Log-Likelihood:                -254.02\n",
Hao-Ting's avatar
Hao-Ting committed
453 454
      "No. Observations:                 178   AIC:                             514.0\n",
      "Df Residuals:                     175   BIC:                             523.6\n",
Hao-Ting's avatar
Hao-Ting committed
455 456 457 458 459
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
460 461 462
      "Intercept      -0.0019      0.076     -0.025      0.980      -0.152       0.149\n",
      "component_1    -0.0400      0.043     -0.928      0.355      -0.125       0.045\n",
      "component_2     0.0195      0.043      0.455      0.650      -0.065       0.104\n",
Hao-Ting's avatar
Hao-Ting committed
463
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
464 465 466 467
      "Omnibus:                        2.454   Durbin-Watson:                   1.890\n",
      "Prob(Omnibus):                  0.293   Jarque-Bera (JB):                2.111\n",
      "Skew:                          -0.159   Prob(JB):                        0.348\n",
      "Kurtosis:                       3.429   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
468 469 470 471 472
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
Hao-Ting's avatar
Hao-Ting committed
473 474 475
      "Intercept   0.0         1.0\n",
      "1           0.0         1.0\n",
      "2           0.0         1.0\n",
Hao-Ting's avatar
Hao-Ting committed
476 477 478 479
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
480 481 482
      "Dep. Variable:              MWQ_Focus   R-squared:                       0.019\n",
      "Model:                            OLS   Adj. R-squared:                  0.008\n",
      "Method:                 Least Squares   F-statistic:                     1.719\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
483 484
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.182\n",
      "Time:                        11:22:00   Log-Likelihood:                -253.59\n",
Hao-Ting's avatar
Hao-Ting committed
485 486
      "No. Observations:                 178   AIC:                             513.2\n",
      "Df Residuals:                     175   BIC:                             522.7\n",
Hao-Ting's avatar
Hao-Ting committed
487 488 489 490 491
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
492 493 494
      "Intercept       0.0199      0.076      0.261      0.794      -0.130       0.170\n",
      "component_1    -0.0288      0.043     -0.670      0.504      -0.114       0.056\n",
      "component_2     0.0749      0.043      1.754      0.081      -0.009       0.159\n",
Hao-Ting's avatar
Hao-Ting committed
495
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
496 497 498 499
      "Omnibus:                        0.220   Durbin-Watson:                   2.069\n",
      "Prob(Omnibus):                  0.896   Jarque-Bera (JB):                0.227\n",
      "Skew:                          -0.082   Prob(JB):                        0.893\n",
      "Kurtosis:                       2.939   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
500 501 502 503 504 505 506
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0    1.000000\n",
      "1           0.0    1.000000\n",
Hao-Ting's avatar
Hao-Ting committed
507
      "2           0.0    0.243327\n",
Hao-Ting's avatar
Hao-Ting committed
508 509 510 511
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
512 513 514
      "Dep. Variable:             MWQ_Future   R-squared:                       0.020\n",
      "Model:                            OLS   Adj. R-squared:                  0.009\n",
      "Method:                 Least Squares   F-statistic:                     1.797\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
515 516
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.169\n",
      "Time:                        11:22:00   Log-Likelihood:                -255.02\n",
Hao-Ting's avatar
Hao-Ting committed
517 518
      "No. Observations:                 178   AIC:                             516.0\n",
      "Df Residuals:                     175   BIC:                             525.6\n",
Hao-Ting's avatar
Hao-Ting committed
519 520 521 522 523
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
524 525 526
      "Intercept      -0.0268      0.077     -0.350      0.727      -0.178       0.124\n",
      "component_1    -0.0267      0.043     -0.615      0.539      -0.112       0.059\n",
      "component_2    -0.0761      0.043     -1.768      0.079      -0.161       0.009\n",
Hao-Ting's avatar
Hao-Ting committed
527
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
528 529 530 531
      "Omnibus:                        2.882   Durbin-Watson:                   2.010\n",
      "Prob(Omnibus):                  0.237   Jarque-Bera (JB):                2.456\n",
      "Skew:                          -0.264   Prob(JB):                        0.293\n",
      "Kurtosis:                       3.230   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
532 533 534 535 536 537 538
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0    1.000000\n",
      "1           0.0    1.000000\n",
Hao-Ting's avatar
Hao-Ting committed
539
      "2           0.0    0.236581\n",
Hao-Ting's avatar
Hao-Ting committed
540 541 542 543
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
544 545 546
      "Dep. Variable:              MWQ_Habit   R-squared:                       0.031\n",
      "Model:                            OLS   Adj. R-squared:                  0.020\n",
      "Method:                 Least Squares   F-statistic:                     2.834\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
547 548
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):             0.0615\n",
      "Time:                        11:22:00   Log-Likelihood:                -250.56\n",
Hao-Ting's avatar
Hao-Ting committed
549 550
      "No. Observations:                 178   AIC:                             507.1\n",
      "Df Residuals:                     175   BIC:                             516.7\n",
Hao-Ting's avatar
Hao-Ting committed
551 552 553 554 555
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
556 557 558
      "Intercept      -0.0090      0.075     -0.121      0.904      -0.157       0.138\n",
      "component_1    -0.0216      0.042     -0.512      0.609      -0.105       0.062\n",
      "component_2    -0.0967      0.042     -2.303      0.022      -0.180      -0.014\n",
Hao-Ting's avatar
Hao-Ting committed
559
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
560 561 562 563
      "Omnibus:                        4.204   Durbin-Watson:                   2.035\n",
      "Prob(Omnibus):                  0.122   Jarque-Bera (JB):                4.907\n",
      "Skew:                           0.131   Prob(JB):                       0.0860\n",
      "Kurtosis:                       3.770   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
564 565 566 567 568 569 570
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0    1.000000\n",
      "1           0.0    1.000000\n",
Hao-Ting's avatar
Hao-Ting committed
571
      "2           0.0    0.067333\n",
Hao-Ting's avatar
Hao-Ting committed
572 573 574 575
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
576 577 578
      "Dep. Variable:             MWQ_Images   R-squared:                       0.003\n",
      "Model:                            OLS   Adj. R-squared:                 -0.009\n",
      "Method:                 Least Squares   F-statistic:                    0.2530\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
579 580
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.777\n",
      "Time:                        11:22:00   Log-Likelihood:                -257.59\n",
Hao-Ting's avatar
Hao-Ting committed
581 582
      "No. Observations:                 178   AIC:                             521.2\n",
      "Df Residuals:                     175   BIC:                             530.7\n",
Hao-Ting's avatar
Hao-Ting committed
583 584 585 586 587
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
588 589 590
      "Intercept      -0.0351      0.078     -0.451      0.653      -0.189       0.118\n",
      "component_1    -0.0109      0.044     -0.247      0.805      -0.098       0.076\n",
      "component_2    -0.0287      0.044     -0.657      0.512      -0.115       0.058\n",
Hao-Ting's avatar
Hao-Ting committed
591
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
592 593 594 595
      "Omnibus:                        3.184   Durbin-Watson:                   2.163\n",
      "Prob(Omnibus):                  0.204   Jarque-Bera (JB):                3.242\n",
      "Skew:                          -0.308   Prob(JB):                        0.198\n",
      "Kurtosis:                       2.757   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
596 597 598 599 600 601 602 603 604 605 606 607
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0         1.0\n",
      "1           0.0         1.0\n",
      "2           0.0         1.0\n",
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
608 609 610
      "Dep. Variable:              MWQ_Other   R-squared:                       0.005\n",
      "Model:                            OLS   Adj. R-squared:                 -0.006\n",
      "Method:                 Least Squares   F-statistic:                    0.4832\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
611 612
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.618\n",
      "Time:                        11:22:00   Log-Likelihood:                -253.83\n",
Hao-Ting's avatar
Hao-Ting committed
613 614
      "No. Observations:                 178   AIC:                             513.7\n",
      "Df Residuals:                     175   BIC:                             523.2\n",
Hao-Ting's avatar
Hao-Ting committed
615 616 617 618 619
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
620 621 622
      "Intercept      -0.0364      0.076     -0.479      0.633      -0.187       0.114\n",
      "component_1    -0.0288      0.043     -0.669      0.505      -0.114       0.056\n",
      "component_2    -0.0297      0.043     -0.694      0.489      -0.114       0.055\n",
Hao-Ting's avatar
Hao-Ting committed
623
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
624 625 626 627
      "Omnibus:                        1.668   Durbin-Watson:                   2.039\n",
      "Prob(Omnibus):                  0.434   Jarque-Bera (JB):                1.682\n",
      "Skew:                          -0.230   Prob(JB):                        0.431\n",
      "Kurtosis:                       2.877   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
628 629 630 631 632 633 634 635 636 637 638 639
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0         1.0\n",
      "1           0.0         1.0\n",
      "2           0.0         1.0\n",
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
640 641 642
      "Dep. Variable:               MWQ_Past   R-squared:                       0.018\n",
      "Model:                            OLS   Adj. R-squared:                  0.007\n",
      "Method:                 Least Squares   F-statistic:                     1.613\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
643 644
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.202\n",
      "Time:                        11:22:00   Log-Likelihood:                -257.21\n",
Hao-Ting's avatar
Hao-Ting committed
645 646
      "No. Observations:                 178   AIC:                             520.4\n",
      "Df Residuals:                     175   BIC:                             530.0\n",
Hao-Ting's avatar
Hao-Ting committed
647 648 649 650 651
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
652 653 654
      "Intercept       0.0023      0.078      0.030      0.976      -0.151       0.155\n",
      "component_1    -0.0097      0.044     -0.222      0.825      -0.096       0.077\n",
      "component_2    -0.0773      0.044     -1.772      0.078      -0.163       0.009\n",
Hao-Ting's avatar
Hao-Ting committed
655
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
656 657 658 659
      "Omnibus:                        3.157   Durbin-Watson:                   2.119\n",
      "Prob(Omnibus):                  0.206   Jarque-Bera (JB):                3.176\n",
      "Skew:                          -0.319   Prob(JB):                        0.204\n",
      "Kurtosis:                       2.856   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
660 661 662 663 664 665 666
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0    1.000000\n",
      "1           0.0    1.000000\n",
Hao-Ting's avatar
Hao-Ting committed
667
      "2           0.0    0.234243\n",
Hao-Ting's avatar
Hao-Ting committed
668
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
669 670 671 672 673 674 675
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Hao-Ting's avatar
Hao-Ting committed
676 677
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
678 679 680
      "Dep. Variable:               MWQ_Self   R-squared:                       0.020\n",
      "Model:                            OLS   Adj. R-squared:                  0.008\n",
      "Method:                 Least Squares   F-statistic:                     1.746\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
681 682
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.178\n",
      "Time:                        11:22:00   Log-Likelihood:                -255.28\n",
Hao-Ting's avatar
Hao-Ting committed
683 684
      "No. Observations:                 178   AIC:                             516.6\n",
      "Df Residuals:                     175   BIC:                             526.1\n",
Hao-Ting's avatar
Hao-Ting committed
685 686 687 688 689
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
690 691 692
      "Intercept      -0.0142      0.077     -0.185      0.854      -0.166       0.137\n",
      "component_1     0.0213      0.043      0.491      0.624      -0.064       0.107\n",
      "component_2    -0.0785      0.043     -1.821      0.070      -0.164       0.007\n",
Hao-Ting's avatar
Hao-Ting committed
693
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
694 695 696 697
      "Omnibus:                       10.753   Durbin-Watson:                   1.891\n",
      "Prob(Omnibus):                  0.005   Jarque-Bera (JB):               10.918\n",
      "Skew:                          -0.566   Prob(JB):                      0.00426\n",
      "Kurtosis:                       3.436   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
698 699 700 701 702 703 704
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0    1.000000\n",
      "1           0.0    1.000000\n",
Hao-Ting's avatar
Hao-Ting committed
705
      "2           0.0    0.211068\n",
Hao-Ting's avatar
Hao-Ting committed
706
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
Hao-Ting's avatar
Hao-Ting committed
707
      "\n",
Hao-Ting's avatar
Hao-Ting committed
708 709
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
710 711 712
      "Dep. Variable:              MWQ_Vivid   R-squared:                       0.003\n",
      "Model:                            OLS   Adj. R-squared:                 -0.009\n",
      "Method:                 Least Squares   F-statistic:                    0.2284\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
713 714
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.796\n",
      "Time:                        11:22:00   Log-Likelihood:                -255.99\n",
Hao-Ting's avatar
Hao-Ting committed
715 716
      "No. Observations:                 178   AIC:                             518.0\n",
      "Df Residuals:                     175   BIC:                             527.5\n",
Hao-Ting's avatar
Hao-Ting committed
717 718 719 720 721
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
722 723 724
      "Intercept      -0.0136      0.077     -0.176      0.860      -0.166       0.139\n",
      "component_1     0.0015      0.044      0.035      0.972      -0.084       0.088\n",
      "component_2    -0.0293      0.043     -0.676      0.500      -0.115       0.056\n",
Hao-Ting's avatar
Hao-Ting committed
725
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
726 727 728 729
      "Omnibus:                        0.556   Durbin-Watson:                   1.900\n",
      "Prob(Omnibus):                  0.757   Jarque-Bera (JB):                0.690\n",
      "Skew:                           0.064   Prob(JB):                        0.708\n",
      "Kurtosis:                       2.723   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
730 731 732 733 734 735 736 737 738 739 740 741
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0         1.0\n",
      "1           0.0         1.0\n",
      "2           0.0         1.0\n",
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
742 743 744
      "Dep. Variable:              MWQ_Words   R-squared:                       0.010\n",
      "Model:                            OLS   Adj. R-squared:                 -0.001\n",
      "Method:                 Least Squares   F-statistic:                    0.8985\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
745 746
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.409\n",
      "Time:                        11:22:00   Log-Likelihood:                -255.23\n",
Hao-Ting's avatar
Hao-Ting committed
747 748
      "No. Observations:                 178   AIC:                             516.5\n",
      "Df Residuals:                     175   BIC:                             526.0\n",
Hao-Ting's avatar
Hao-Ting committed
749 750 751 752 753
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
754 755 756
      "Intercept       0.0423      0.077      0.551      0.582      -0.109       0.194\n",
      "component_1    -0.0577      0.043     -1.329      0.186      -0.143       0.028\n",
      "component_2     0.0099      0.043      0.229      0.819      -0.075       0.095\n",
Hao-Ting's avatar
Hao-Ting committed
757
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
758 759 760 761
      "Omnibus:                        3.456   Durbin-Watson:                   2.191\n",
      "Prob(Omnibus):                  0.178   Jarque-Bera (JB):                3.334\n",
      "Skew:                          -0.335   Prob(JB):                        0.189\n",
      "Kurtosis:                       2.974   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
762 763 764 765 766 767
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0    1.000000\n",
Hao-Ting's avatar
Hao-Ting committed
768
      "1           0.0    0.556909\n",
Hao-Ting's avatar
Hao-Ting committed
769 770
      "2           0.0    1.000000\n",
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
Hao Ting Wang's avatar
Hao Ting Wang committed
771 772
      "\n"
     ]
Hao-Ting's avatar
Hao-Ting committed
773 774 775
    },
    {
     "data": {
Hao-Ting's avatar
Hao-Ting committed
776
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEYCAYAAAAXsVIGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXecVEXWhp93AnFIgqQhikgSMa/iiooYUFHXsAYMuKjrGtZVjBhAPwMqmHUVI2aMqCgiGEDMrokgIEoUQaIwpEnn+6PuDD1Nz3QPEzpMPf7qR/etunVPNdinq+rUe2RmeDwej8eTKKTF2wCPx+PxeELxjsnj8Xg8CYV3TB6Px+NJKLxj8ng8Hk9C4R2Tx+PxeBIK75g8Ho/Hk1B4x+SpMJIWSLJIJcb7h0v6Jng9SNLKKrKzQ2DXrlXU/wJJF8fYNkvS4KqwoyoIHVuy2e5JPrxj8lQWQ4FWEUoisRhn0+wq6n8f4MkY2w4B/lVFdlQ1yWy7JwnIiLcBnpRhvZkti7cRZWFmBUCV2WhmK8rRXFVlRzWQzLZ7kgA/Y/JUOaFLdSHXPpY0spz9HBwsxWVF6jtkqe4kSbMlbZY0TVKXsPpdJf2fpG/D+j9R0hpJtSXVl/SwpKWS8iQtljQ0zP6HJf0k6Q9J3cKWu0q9X9IgYBiwV2BPh+D6FZIWSsoJ7N6vjM8i0vMbSBotabWkVZJekdQ65J7jJc0IPpf5kq4MqSuxDFnasmck2yV1l/RRYPcKSY9Lqh/r36vHE453TJ5U5EbgPNzSWjPgzghtngf2kLRzyLVTgNfNbAtwD7A/cDzQBbgfuFXSHiHtBwP/Bo4xs5/C+i/r/rHAKOAH3NLiYkn/BC4BLgD2AN4FPixyWqUQ/vzRQGfgcOAgwICJkjIkNQdeBh4N7LkysOfQMvqPxDa2Ay8Ai4BewDHAocA15ezX4ynGOyZPZTEq+MUcWg6Mky23mtknZjYdeBjnoEpgZrOB74C/g5vhAEfjvmQBPgUGm9lXZvarmd0F5AChM4gPzWySmX0VwYZS7zezTcHrfDNbFiwxDgWuNbMJZvazmd0GTAMuKmOcxc+XtBNwKjDQzL4xsxnAmUAH4AggG8gElprZQjN7FedAZpT5SW77uUWyvSOwClhoZl8CxwLPladfjycU75g8lcXtwO5h5Zsy76g6fg55vQ73hRyJ5wkcEzAA+BP4KHj/DJAt6W5J70j6DcgC0kPu/7UMG2K5H3BRbkA74PFQxw4cAnQt4xmhz+8e/Dk35P5VQP2gj++B14FXg2W7h3DOZXkZ/cfKcOBSYIWkl4BuwNxK6NdTQ/GOyVNZrDSzeWFlU1AXKWx8ewJvYu0nN+x9aZv1LwE9Je2Cc1BjzawwqHsS+C+wGXgW6A2sDbt/E6UTy/3hYzibko69G25przRCn5+BG3f4j4NdgKfMcWJw7TFgT2BasGcE2362Mf/9mNk9QHvgOqAebrb0RKz3ezzheMfkqQ5ygQZFbyQJt/yzPf0Q2hew0/YaZWa/AVNwS2BHEizjSWoKDALOMrOhZvYSsAVoRAwRaTHeX+wIzGwtLlowO9SxA//BLcPFwk9ALSAr5P5lwN3ALpK6SrrPzH4ws1vNbH+cYz4luL/E3xFlf67FtkuqI+leoJaZPWxmx+KWH0+L0W6PZxu8Y/JUB1/jvhzPktQJFxiww3b0MxM3SxgqqaOkf+D2hSrCC7hAgCVm9nVwbR2wHjgheM4BuGUwAbVj6DOW+3OAlpJ2kpSBC9C4UdIpkjpJGgb8kxjPXJnZHOAt4BlJB0rqhpu57I1zWmuAwZJuD57ZGxecUbQ/9jVwlqTdJf0FuIXIM9QStgP5wAHAg0G0YzfgbyH9ejzlxjsmT3XwATAC55D+BxTifq2XCzNbBxQ5o1m4iLebKmjbq7g9qBdDnpMHnA70C57zDPA+LlJurxjsjOX+V3HOaxYuCu8+YCTOQc0ETgBONLPPyjGWs3H7euNwjqEe0M/M/gz2ko4NbJoBvIFzZLcG914H/AZ8Edg7HPf3FIlw2/8etJ0WPHcLMLAcdns8JZDPYOvxeDyeRMLPmDwej8eTUHjH5PF4PJ6Ewjsmj8fj8SQU3jF5PB6PJ6Hw6uLlZOWmX3y0iCciny4dE28TPAnMcZ1urrAq+7cH3B31+2fPTy9PevV3P2PyeDweT0LhZ0wej8eTJCi9ZswlaoxjkrSTmZUluunxeDwJjTK8YwJAkuFkYApxkiqbgKnA1Wb2c1n3Bvd3AOYDO+JOos/CCT42KLpuZiu3z/zYCHLgfMD2yeB4SmHm9Nn8996nePCJO+JtiqeaKSw03njof/w+fy0ZmWmcdOk+NGu9VWpvyuuz+f7jRUjQ95Tu7Nq7DRvXb+HFu75ky8Y86jWsxUn/3oesxnXiOIrkI612zZhLxOp++5hZlpnVx6kVz8cpE7csz8PMbFHQz6ryGlpBGuEELj2VxPNPvcKIm+5jS264kLenJjDz89/Izyvg4rv70f+c3Rj/+PfFdZtycvn0zZ+5aNShnHvLwbz16HcAfDj2Jzr2aMaFIw/lgAGdmfD0j/EyP2lRRlrUkgqUexRmttrMhgBzgMuKrks6T9IcudTU74dlBi1qU5SuuVnI5YslLQlSMl8dKE8XqRbfHaSkXhakjM4K6gZJ+jQoqyTtKalX8NylkjbJpZ5uH6SWngDUD/LUtCurb09stG7bittGXR9vMzxxYsHMFXTZqxUA7bs2Y8nPa4rratXJoHHzeuRuLiB3Sz5Kc0Fiyxeto8ve7p4O3ZuxYFaVLpSkJGm1M6KWVKAi7vVd4GAASScA/4dLH9AC+BB4R1JpCdpC6Y5LZHYIcDlwUnD9Tpwy8t64VNA7Ag+E3Nc7eGYHXCbSV3FCmW1wKZ8BrjGzpUB/YEMwW1sUQ98E4xoeONLicuct98UwpNTnkH5/JSMjNf4n8JSfzRvzqFNv6//eaWmioGCr5mvjZvUYdcEE7rvkfQ44tjMArXdqzKwvfgNg5hdLydtSUL1Ge5KGinyzrGLrns15wP1m9l3wfoSkf+McV7R9qCFmlgPMkPQYcJqkV4FzccrIywEkXQPMkvSv4L7VZvZeUSeSjgQWAnVw2UBX4dJJlyCYkZXat5ltLmprZsNxKsvF+HNMHg/UqZfJlk15xe+t0EgPIsZmf/M769Zs5pqnjgHg8eun0KF7Mw75ezfeeuRb/nvlh3TdtxWNmtWNi+3JTKos1UWjIo6pOVA0F28P9JF0VUh9reB6WY6p0MwWh7xfAhyGm8HUBSYEwRdF5OGcDrgkaKHsDYwHGuNk/evhctCEE61vnxLa44lCh+7NmPXVUnr1acfC2Stp2aFRcV29rFpk1konIzMNSdTNymTzhjzmz1jBvkd2okP3ZkyftpgO3XeM4wiSk1RZqotGRUZ5NPBR8Hop8JCZPVRUKakLsBjnwEojTVJLMytyMu1xs55VuIyavc1sZtBfLVzW019wy3ihWTTbAM8Dh5jZJ8G1+4mchTNa3x6PJwo9erdh7nfLeWjIZMzg75fty9TX59C0dRY99sum7ffLefCyyShNdOjRjM57tGDV7zmMHfUlAA2b1uXk/+wb51EkH0pPelGHmCi3YwoCF67HzS7uDS4/DQyX9BEuW+apwBhgV7amwy6NOyRdBHTGLQkONLMCSc8Ct0s6B5cx8y6cM9wlQh9ZuP2yDYGNfYEzcFk5wSUuqyWpjpltLmffnlJold2Cx569J95meOJAWpo48ZK9S1xr3rZh8evDz9iVw8/YtUR9s9YNuGhUv2qxL1VJq1MzZkyxLlhODSLa1gPf4/aW/mpmfwCY2XO47KRv4NJKXwOcYGbRlsUKcLOUxbjU09ea2cSg7lJgQfC85UA34Cgz22bH1MxmAzcA70laA9wGPAx0CfaUfsRlTl0pqVd5+vZ4PJ5URFJPSZ9J2iBptqSjSmnXVtJESeslLQh+0IfWD5b0a1D/qaSeFbbNZ7AtHz74wVMaXsTVUxaVIeL6y2WvRP3+6XTPyVGfE2xfzAXux0Uk98dth+xqZgvD2n4OfAFcjdvLfwfob2ZfSDoat2J2JO6H/g3AaWbWpRzD2tY+75jKx/AP+voPzBORl16aHW8TPAnM7MeWVtgx/XrFa1G/f3YaeWIsjukI4BmgpQVOQNJ44DMzuy2kXRdgJtDEzNYH1x4EapnZ+ZImAB+a2V1BXW2gB/C9mRWyndSM2EOPx+NJASpR+aEb8JOVnJnMxjmV8HZLipxShHZ7AYXBkuBK4E1gXUWcEiSoY5JUt7xyRx6Px5PqKDM9eokgDCBpeFhXWcDGsGsbgfrlbLcD8E/c2dA2uOC3tyRVKEqj0kM8Kir6GvAJMAKn5hDteTnAgWb2XfDsfczsm3LavDfwtZnVjFjMGLFC45uX1rLmtzzSM8S+A5vQoHnGNm2mPLyK7N3q0rlPfXI3FfLZE6vJ32KkZYj9BzWhbqP0OI3AU9lIYtjA2+napju5+blcP+YKFq1YUFx/8oGnc0qfM8kvzOeRd+7j4x8n06heY967ZRo/L3VLnZO+m8CzHzzB0FNuZq/O+7Jhcw4AFz50Djmb1kd6rCdAadHnEpGEASKwAXeeM5R6uCjl8rTbAjxiZrMAJA0F/o1T85kR1dhSqKrYwz5FzkHSDsB1ONHXXiFnlsqiWfQmDjPzGndVxJIfNlOQD4df2ZyV83P57vU/6XNB0xJtfnx7Hbkbt87a53++kUatM9njhEbMm7aBnybnsOeJjcK79iQp/XY/ktqZtTl1xLH02mlPrv77MC56yAVpNWu4I2f2HcyJt/andmZtXrhqHJ/Omkr39j155+tx3PJiSW3FHu13Y/C9p7M2Z3U8hpKUVGI+plnAlWHXugKfRWjXRlJWoNBT1G5W8Ho2UDukfTpuQlIhqnwpr7yir5Lexp2RelbSUElpwdT0pyAccamkISH9WDDjKYGkNpLekLQyCGUcEoSOI6m2pIclrZW0BDihij+GpGTFL1to1d39m2vWsRarF5Y8krbo201IolX3rakLGmVnkr/FLVvnbS4kzU+WUoq9Ou/LJzM+BuCHX79l1/a7Fdf17LgH3/7yNXn5ueRsWs/CFQvo0qYbPdrvRo92u/HsFa9x7z8fZcdGzZFE+xYdufnMO3nh6jc54YBT4zSi5EJpaVFLjHwEFEi6RlItSQNweqUvhjYyszk4LdI7AvHr/YGBuMAJgCdxQty7BpF+I3AzpZkVGWd17jHFJPpqZgOARcCZQXTIabjDsocCDYF/4T6k1qU9SFI68HbQTxvgCOB84KygyXBgP5zn3wM4sBLHmTLkbTYy6279J6I0UVjgnM7apXks/HojPY9pUOKe2vXTWPbTZt65eTmzJ+fQqXf4krUnmalfpwHrN60rfl9QWEh68Osjq04W60OW4jZszqFB3Yb8+vs87n/rLs4ceSKTv3+P60+7hXq16vHch09y1ROXcN69p3P6wWezS3a3ah9PshHLHlMsmFkuLkT8aJy03J3AKWY2X9LAYIukiBNxYtnLcI5riJlNC+oeBu7AnUNdhQuW+JtVMNy7Oh1TRNFXM8s1sxG4xIEHR7jvbZzj+B1ojVOSSAfKCo7YG6ficIWZbQ72tu7GOSeA04E7zGyZma3Axd5vQ6RNxI/HzC/HkJObzDoif/PWZTozIy2QRJn/xUY2/VnAh/etZP4XG5nz4XqWztzMjHfW0e2wBhx9YwsOvrgZn4yu7tRbnqpkw+b11K+zdfU8LU0UFLpz6Tmbc6hfe+sPkfp1sli/8U++nD2NL2d/CsDk796jW9td2ZS7iWcnP87m3E1s2LKBL2Z/Ste23at3MEmI0tOillgxsxlmdqCZNTSzbmY2Prj+fOgWiZktNrOjzayxmXUwsydD6szM7jezXcysgZkdamYVlnarTscULvp6XbCUtlbSWpz4avsI92XgVCVW4fIqnRhcL8v29jiV8RUh/d/FVrXxVjjB2CIWROrEzIabmULLwWd3jDbOlGHHTrVZOnMLACvn59K49dY0B3uc0IjDr2rOoZftSMf96tGlbwNa96hDrXppZNZ1zqtOgzTyN/tjX6nEt/O+5qCefQHotdOezF2y9ezW9PnfsXfnv1ArozZZdRvQqWVn5v42h/87exSH73U0APt3/SszF/1IhxY78cI1b5KmNDLSM9hr532ZtWh6XMaUTFTiUl5CU53CS7GKvoYzAheamG1mm4JgisFRnrUUWGVmxQKykpriokkAfsM5r0+D99ukx/BAm151WPbTZibdtQLD2O/MJsz+YD1ZO2bQZrfIKQt6DmjIV8+v4eepGygsMPYZ2LiarfZUJZO+m0Dv7n148eq3kODapy9n0GHns/CPBXz0w/s8++ETPH/1G6QpjXvHjSA3fwujXr+V286+m9MPPpuNWzZywzNXsOLPP3jz89cYO3Q8+fn5jPviFeYt9cL+UakhIq6VrvwQHrIdIvp6ErCnmf0h6QzcPs+xhIm+mtlcSXNwS21PSnoJt3Q3EOdY7sPtFfU2s89Dn1f0GvghKGNxjq0hTsfvFzM7W9Iw4GTgKFzY4ytA31jCxb3yg6c0vPKDpywqQ/nh9wemRv3+aXVJn6T3XlU1Y5oqqRCXmuJPXHBDCdFXSY1wzqI18CslRV+fBh6Q1Bm3/zMGt5T3J/Ayzul0Az6P9HAzyws0nO7DLdkJeAsXXw9wK25P63vcntVooG9lDd7j8XiqgrQYgxuSHa+VV078jMlTGn7G5CmLypgxLX/s86jfPy3O29/PmGoaF+x/f7xN8CQoVxRvYXo8VUNaZs34yk6NEA6Px+PxpAw1w/16PB5PCqC0pF+li4mkd0ySOppZzTn16vF4aizyS3nbR6CQsDFIxR5aplbBs0YCQ4LX7YLnNI1ym6eSmDV9Lpeee2O8zfAkKNPnz+b8e66KtxkphT9gWzGK1cWrmGYE8utmtgiXO8RTDbzw9Djef2cKdevWjt7YU+MY8/4rvPPVh9St5f99VCaxauElO9XuXiUNCtTEH5O0TtJ8SYdJelTSn8H7Q0PanyxpetD2W0n9g+tX4Q7dni9pgqQOwWytWVC/h6QPAkmieWHq4k9LekDSh8Esa3roMz3RyW7TgltGhqvmezyONju2YuT510dv6CkXlamVl8jEaxSH4ZIBNgbew2ng/Q83A3oVp9aApMNwh2uHAE2AYcBrknY3szuB54HRZtY/tPPAOX0ITMZp9B0HXAxcFNLsHOAaoCnwMfAQnpg5qN/+pNeQ9W5P+Tl0j7+Ske7/fVQ2SlPUkgpUlWP6KFSgNSgXh9QvM7NngrzwHwPrzWy0meUBk9gq5nom8IKZvW9mBWb2Nk7B4SzK5lhgpZndHqiXz8RJs/8jpM27ZvaVmW0BXsCpkZcgkrr4yFsf3o6Pw+PxeCpOTZkxVdVPmkOi7DGFpqwswEkNFVHIVofZAjezCmUBsHOU57cAFka4r13I+z9CXucRIetipBTFyzbO8MoPHo8nPqTIjCga8Zprx/rlvggIzzOxEy5hVbT7OmzHfR6Px5OwpMqMKBqJPsqngdMkHS4pPUj/eyzwXFC/BaccHs47QANJ1wZpg3sAV7E1HbCnEmjVujn/fWZEvM3wJCitm7ZgzFX3xtuMlMLvMVWMqRHOMeUEKc9jxsw+BQYBo3DLfbcCp5vZF0GTl4GjJX0adt9a4EjgcNyS3XvA48DIigzK4/F44ooUvaQAXl28nPg9Jk9pZH3uRVw9pZN16E4V9hobPl4Q9fun/sEdkt47+XjOcvLjyvHxNsGToPTrfEG8TfCkOKohGWwTfY/J4/F4PEWkKXqJEUk9JX0maYOk2ZKOKqVdW0kTJa2XtEDSOSF1WZKekrQyEEgYJ6lNhYdZ0Q48Ho/HU01UkmOSVAt4Gydo0BgXHDZWUvsIzV8GZuHECE4H7pa0X1A3Cidi0Cn4cw3waAVGCHjH5PF4PEmD0hW1xMghQF3gHjPLM7O3gCk4mbetz5O6APsANwZiBZ/hFHeKxAouAk40sz9xWqUNgBUVHWelOqaqUhaXdLCknBjaPSJpVEWe5YmdBT+t4L4hE+JthidB+eGnGZw15F/xNsMTmW7AT1Yy+m020CNCuyVmtj5SOzPLN7PNku7COaT9gJsralxVBD9Ul7L4NpiZ332uJiaPnc5Xk+dRu05mvE3xJCCPj32WtyZPoG6dOvE2JaWI5YCtpOE4XdFQbgqUbIrIAjaGtdkI1A+7Fmu7G4Jn3g1MlNQ9kJjbLqptKU9SmqRFkk4KubaLpE2SGkuqL+k+SUslrZA0VlKrCP1Mk3RFyPuGQR9dA9XwB4PrZSqISxocbOStDJTOP5U0qIo/hpShWesGnDusb7zN8CQo7Vpnc/8wf/i6sonlgK2ZDTczhZXhYV1twC3lhVKPII1QeduZ2WYz24gT3N4J6FmRcVabYwoEW5/FbZ4VcQbwVnAg9lFg76B0xHnlcZLCbRwT1sdJwI9mNjvCYyMqiEvqA9yHE4ltDSwGeldgeDWO3Q/sQHqG36L0RObwA/uSmeFPo1Q2lSjiOgvoEnata3A9vF0bSVmR2kl6S9KpIXWZOL+yNlZDIlEV3yxlKYuPAfpLahS8HwiMkVQH+DtwtZktNbMc4BJgL2DXsP5fBrpK6hq8PyPoNxKlKYifBTxvZp+YWS5wC7A0/OZI6uLP3jO5vJ+Hx+PxVA5pMZTY+AgokHRNINs2ABcQ8WJoIzObA3wH3CGpjqT9cd/bRfJuXwM3SMoOnNf9wIdm9uv2D7JqHNMhZtY4rDwIYGZzcYM8UVJv3JRwIi7XUiZOAZygbQ6wkpKK4ATRH+OA04N4+f2Al0qxpTQF8TY4odeiPgtxs6YSRJoSn3lZv1g/B4/H40lIgh/k/YGjcd+zdwKnmNl8SQPDgs1OxIliL8M5riFmNi2oux0Xdv41UOSM/l5R++Ix1x6DM/xn3KylQNJynCBrR2AJgKQGuMSBy9g2ZfoY3FLcn7hZ0WrKx2JCHJ4k4ZyVx+PxJCyVqS5uZjOAAyNcfx4XEl70fjHOgUXqIx+3XXJNpRlGfM4xjQX2B04mWIILZizPACMktQ6ZEs7GZbYNZxLOWV1K6ct4ZfEkTrW8t6RM4Eogezv6qdE0bdmAIQ8cE28zPAlKdsvWjH3gyXibkVJ4dfHtp0xl8SDQYQLwu5lND7nvcuBb3JTwN9xp5P5hcfYEfRTiUl/UCfoqF2b2OXA18ApuRtYRt7SXW96+PB6Pp7qoKRlsa6S6eHCaOd/Mfgm5tgIYaGbvl3Xv+4tG1LwPzBMT/fDH6Dylk9aucYWnMwW/ro76/ZO+0w5JP22qqfGcvYDbgrDxZThZjQzgizLvArKzwoMEPR7H9wP8spWndPb89PIK96EUybcUjZrqmF4BdgO+wWk7zQCOMrN1cbXK4/F4yiJF9pCiUSMdU7BvdX1QPB6PJzmoGX6pZjomj8fjSUashsyYEiKEI9Cs2xQhkq/ii7KeKmPuzIXccOHD8TbDEw8Eba88lF0ePZXOD5xM7ezGJaqbn7InXUafRpfRp9HynP1K1NVu14ReEy9CtdKr0+LUQDGUFCCRZkxnmtmr8TbCExtvPPchUyb8j9p1a8XbFE8caNxnZ9JqZTD3ny9Rr0crsi/pw6/XvAVArdaNaHJ4V+ac9yIUGrv89xT+nDqPTb+sJK1eLdpcchCFeQVxHkGSUkOCHxJixlQWknYK0vWuCtTJR0iqHdRJ0lBJi4O0vhMltQvqFoQpmQ+XND54vYukqYGO36+SRkYQi/WUQcvsZlw1YlC8zfDEifq7ZbPuiwUAbJz5O/W6tiyuy12+nnmXvw6FLrJZGekU5uYD0O7qfix9dBqFm7c7I4KnBpDQX8Zy6X8n4Q7ctgX+ChwG3Bo0OR/4F07zqSkwF6dgHo1RwFScRt/BwKnA4RGev42I60N3vFChMaUK+x+yGxkZfimmppJevxYFG7ZsvVBQCEXZUwsKKfhzMwDZF/Vh49w/2LJ4La3+sT/rPpvPpnkr42BxamBpilpSgURyTGPCFMkn4RxRS+ByM9toZouA69ia1vd04CEzmxFoNg3FKUhEYzPQD/gbTm+vnZm9F94okojrRVefHt7M46lxFGzIJa1eyDJumqBg69lP1Uqnw7CjSKtXi8WjPgCgyRHdaHrMrnR+4GQyd6jPzvecWN1mJz81ZI8pkRzT2WGK5IcBLXDSRSE/zVgANAn09FoQogpuZuvNLJK2XjiDgS+Bu3DKuuMkta6sgXg8qc6G6UtptH9HAOr1aMWmX0rOgjqNOI5N81aw+K7JxUt6s055kp8veYWfL3mFvNUbmHfZa9Vud9JTQxxTIgU/RGIR0EpS7RDntBOQY2Y5kpYQogouqSlO5fZaoICS42sa8roXMMzMLpW0M/A4cBswqMpG4vGkEGun/EyDfdqxyyOngmDhrRNpfsqebPltLaSlkbV7G5SZTsP9OgCw9JFpbJj5e3yNTgFSZakuGgmhlSdpAXBFeFReoPz9PS777JU45zIO+NLMLpR0NnAzcATwCzAS2M3MDpE0AZcW+FRcxsX3gW/N7BhJnwA/4pb9MoM+fzCzIdFsnbl6fPw/ME9CsmXA3Hib4Elg9vz08gp7lbyVOVG/fzKbZSW990qkpbxtMLM8YAAu8GExTkJoClv3kZ4BHgDeBVbgVMIHBnXX4mZTq3Fp258K6XoQLpvt8qDf34HhVTYQj8fjqQwqL4NtQpMQM6Zkws+YPKXhZ0yesqiMGVPumg1Rv39qNamf9DOmRN9jSjgy0vyBUk9kbhv8eLxN8CQwz8cUMByFpHc5seEdk8fj8SQLNUT5wTsmj8fjSRZqhl9K3q0ySTvF2waPx+OpTkzRSyoQV8e0varikgbgQrw9cWTOjAUM/dd98TbDEweE+EfvYQw/5gWu6/80LRq0K1F/ZI+zuGnAS9w04CVO2P3CEnWtGnXksTO+JDPd79eWGyl6ibkr9ZT0maQNkmZLOqqUdm0DHdL1wXf2OSF1knSzpOWBXukYSfUrOsxEmDGdaWZZYeXuKPc0JTFsr7G89uxkHrztBXK35MfbFE8c2Kv9oWSm12L4+NMZ+83dDNz3quK6HRsY2Yx/AAAgAElEQVS04YBOxzB8/OkMe/tUemb3pm2TXQCom1mfgfteRV5BbrxMT24qKVw80CF9G3gVaAxcBYyV1D5C85eBWbjv3dOBuyUV5TI5HzgZ2BvogJOQG1nucYWRsF/ugWjq3iHvn5b0oKT9gUeAbpJygrqylMSHS3pH0ozAq7eU1EbSG5JWBuriQ6QasqtYSbTKbsa1I86NtxmeONGlxZ78sGQaAPNW/EjHZj2K61bnLOOOiedjVghAeloGeQVOuGXwATfx8v/uJTd/c/UbnQKYFLXEyCFAXeAeM8szs7dwZ0QHhjaS1AXYB7jRzHLN7DPgebbqlQ4CHjCzxWa2BqdlelYgjrDdJKxjKg0z+xy4APjJzLJivO1Q4AzcodoVuF8Ki3AHcI/Aef2zwm+KpC7+wIhYxMtTn959dyfdq4vXWOpmZrEpL6f4faEVkib376HA8snZshaA0/e5kgWrZrNs3UJO2OMivl88hUWr58TF5pRAFrVE+t6SNDysp26479DQc1GzgR4R2i0xs/WltOuGm02F1tXDzZ62m0RwTJFUxSubmWb2vZn9iZty7oKTQNpsZj8Dd+OcUwkiqYtfcs2ZVWCex5NcbMrLoU7m1q2ENIlC25r8LzO9FhcddCd1Muvz1Oc3A3BApwEctMuJXNf/aRrVbcY1R/hzX1VBpO8tMxse1iwL2Bh2bSMQvj8UrV14fdHrCu0zJUK4+NnVkLl2Wcjr9kAdYEXI6l0aTrrI4/HEwNzl37Fnu4P5cv577Lzjbixe83OJ+ssPfZCZv3/J+OlPFF8b8uqRxa/vPXkSIyb6peDyYlSa8MwG3FJeKPWAnHK2C6+vF/wZ3k+5SATHVBqFbKsOXtpgy1ISB0r8bS4FVplZ86ILgSp5PTweT0x8s3AyPbN7M+zo55HEo59cR/8eZ7N83SLS0tLo2nIfMtJr0avNgQCM/eYe5q34Ic5WJz9GpaWkn4UTxg6lK/BZhHZtJGWZWU5Iu1kh9V1x+1NFdRtx6Ym2m0R2THOBUyR9iUsYeAjwdFC3BciSlGZuh3UucJKkV3EfzInAt6X0+yWwUtIwYATQEHgDp05+dhWNJSVp0bopI5+MKsjuSUEM48nPbipx7fc/5xe/PueZPcq8/z+vHFYldqU6RmFldfURUCDpGtxWxhG479hLSjzPbI6k74A7JA0B9sAFSAwImjwLDAm2YNbgsou/ECRu3W4SYY+pNC7GBS2swymFPxNSNwWXhXatpB0oW0m8BIFi+dHAXsAS4CecY7uo8ofg8Xg8lYdZQdQSWz+WC/THfReuBO4ETjGz+ZIGFkU8B5yIC2ZYBrwIDDGzaUHdI8ALwFTgV+AP4D8VHadXFy8nc9a+7z8wT0Rufr3C/z96Upjn/zGrwkdS1m9aFfX7p0Hdpkl/9CWRl/ISknoZTeJtgidBmfXjunib4ElxKnEpL6Hxjsnj8XiShprhmBJ5j6la8aKwHo8n0bEY/ksFEnbGJMmAfczsm7Dr44FvIhwYC7+/AzAf2NHMVkaonwBMMLP7JV2Mi0oZEN7OUzo/TZ/HYw+8xN2jr4+3KZ5qQBJDT7qNXbK7k5ufy80vXcnilQuK6/+23+mc1Hsg+YUFPP7+fXwy6wPq1KrLdSffTusd2pKZUYs7XruBZWt+Y8TZDxff1yW7O/e/fTuvfvZcHEaVXFRiuHhCk7COqaoxs/4hb5tRYzKdVA5jx4xn0jvTqFO3drxN8VQTh/Q8klqZtTn73uPo2X5PLj/uBi57YjAATRvsyGl9/sHAUUdRO7M2T/77Db6Y8wln9/0X836fww3P/4fOrbqxS3Z3Zi76nvMePBmA3TrsyUVHXc3rn78Qz6ElDTVljympl/Ik1ZH0gKSfA+n2+ZIGhjW7WNISSSskXV0k1irpY0lXSDoFGAocKWlmtQ8iSWnVpjnDR/ootJrEHjvtw2c/fQzA9IXf0r1tr+K6Xdvtzg/zvyavIJeczetZvHIBnVt3o3fXg8gryOWhC57jvCMu5bPZH5fo8+oT/o/bXr2WQqsZX7gVpaYs5SW6Y/ooTEdvLW7JrYghwJ7AvkAD4B7g4TBl2+64Q7eHAJcDJ4XUYWZjgduA98wsXMDQUwp9Dt2XDC/iWqOoX7sBOZu3ankWWAHpae7fQP06DVgfUrdxSw4N6jagcf0daFi3MRc9cgZTZ07i8uNuKG5zUI/D+GXZXBb+8Wv1DSLpKYyhJD+J7pgOMbPGoQWYGFL/X+B44E+gLU4KoyHOSRUxxMxyzGwG8BhwWqwPj6TSe/dtoys8KI8nGdmwZT31aocKt6ZRUOj2PDZsXk/9kLp6tbNYv2kdazesYcqM9wGYMmMy3dvuVtzmqL1P4LXPn68m61ODQgqillQg0R1TNBriZIpWAq/jZkWwdVyFZrY4pP0SIDvWziOp9F4+dBsRco+nRvD9r9/w1+59AejZfk/m/T67uG7Gou/ZY6e/UCujNll1GtCxxc7M+30O3//6VfE9e3X6C78sm1t8T/e2u/HD/G/wlAeLoSQ/yR78MBqncXe8meVJ2hOXYbGINEktzaxIXbw9sLC6jfR4UoEPp09gvy4H8vSl45DEsBcu54yDz2PxigVMmTmJF6c+yZP/fg0pjYfeuZPc/C08MflBbjzlLsb8503yC/K4/nm3L9mk/g5s2FIhAeoaidWQvbiElSSKJVxc0hc4NdwrgBY4jbwjgNZAbVy4+DM4HbzOwCRgoJlNlPQxMN7MRkq6FuhvZn2i2bU45+vE/MA8cefY6/8WbxM8Ccx39y6pcOTvHxvnRP3+aV6vS9JHGCf7Ut6lQD/cHtNnwCe4DLXdgvoC3IxqMW6p71ozmxihn/HATpKWVLnFHo/Hs93UjOCHhF3KM7OIXt/Mjgl5/SWwW1iTW0NeF43v5gj9HBzyejpOndzj8XgSllQJbohGwjqmRCUrvWW8TfAkKM/d+Ei8TfCkPDVjJ8E7Jo/H40kSCiwv3iZUC94xeTweT5JQGGMiwGQn2YMfPB6Px5NiVJtjKtKmq67neaqeGdN/4l+DL4+3GZ4EZe7Mhdxw4cPRG3pipsByo5ZUwC/lebaLZ58ay3vvTKJO3TrxNsWTgLzx3IdMmfA/atetFW9TUgq/lFdFBPpzz0gaJylH0kxJ+0t6NXg/Q1KvoG2Z6uGSBkj6KRB4fU3S65KGh9x7t6TFkpZJGi0pK6jbUdK7ktZIWiTpKUn1qvuzSGay27bi9lHD422GJ0Fpmd2Mq0YMircZKUe+5UUtqUC89phOA+4HGgMLgCnAE8AOwAygKPNcqerhknYGXg7aNsMdkg09en8nsHdQugA7Ag8EdTfiDuLuCOwePOPMyh9m6tK3Xx8yMvyE2xOZ/Q/ZzavPVwFmBVFLZSDppJAJwRRJnctoe7CkH4K2/5O0b0hdF0mTg8nDckn3SYo6jY6XY/rGzD40s3xgKjDLzCaYWS7wIU7TDspWDz8VmGpmr5lZvpk9BXwJEORcOhe4xsyWm9mfwDXAWZLqAJuB/YI+0oE9zOzRcCMjqYuPuOXuKvpIPB6Pp2wKrSBqqSiSeuDEsf8BNMEp6oyTtI2/kNQMeBO4BTfRGA2Ml9Qg+B5+E5iGmzz0wAltXxrNhnj95F0d8roAWBvyvpCtDrMh8BCwP073rkjOOA2n1LAorN8FwZ87AnWBCYHmXhF5QDvgOmATcC0wBpgm6Z9mNjukLUH69uGh19ZsWlwzTrh5PJ6Eo5r2mM4A3jWzTwAkDQMuxv2Y/yys7YnAHDN7JXj/qKRLgAFm9kIgrL3FzAokNcFpmK6IZkC8ZkyxfrmPxjmfFma2FzAqpG4xzsmE0jb4cxWQC/QOyePUHOiF087rCTwSJAZsBywH/LF9j8eT0FTWjElShqTGkQpOa3RWUVtz64PzcDOecEq0DZhd1NbMNgZO6StgLvAb8FI0+xL9HFND3MymQFIrXKZZgEzgOeBAScdKSpd0GtAbij/IZ4HbJTWVVBsYCbwb3P8f4CFJDXC5nDbjnJmnHLTObskTzz4YbzM8CUrzVjtwx+NRV2085SCWcPFIWxBFQWEhHAysKaVk4bZNQtkI1GdbYm3bB5cLrx4xTAIS3TGVqh5uZgtxU857cE7lb8DXuJlS0b0LgO9xM6JuwFGB07oMN2tbGPTXGLikWkbk8Xg820ksM6ZICU6DbYlizGxyhDYKxLM34LZCQqkHREqgFVNbM9tsZkuBm4AToo2z2vaYQtW8w66PxM1mit4/DjwevC5VPVxSO2CumXUqqpD0DW4GhJltAP4dlPBnriSGD8fj8XgSiWraY5oFdC16Iykd2Jltl+yK2g4Ku9YVeF1SI+A74KCQTOK1KBlTEJFkjvdthQtu2B+3dnk8sCvwQVU+dOmmH6qye08Sk58ip+49iUth9WSwfQH4XNJhuKM8NwLLCKKewxgH3CXpDGAsLpKvJS4J6zpJ84E7JJ2LC0obDjwWzYCkdUxm9mUQLTIRaAr8CpxsZr/E1zKPx+OpGqpDcsjMpks6C3fWtA3wLXBssA2CpEeA9mbW38yWSzoauA93vGcucIyZrQu6Ox14EBesloM7r3obUUjY1OqJyszV4/0H5omInzF5yqJX0xMqnPL8099HR/3+OaDV+UmfWj1pZ0ySOprZ/Hjb4fF4PNWF18qLI5L6SJoo6c+gfBlMLYvqR+LkipDUIQiHbBY3g2soXj3aUxY/z1zE8ItGx9uMlCLfcqOWVCDhZkySTsGtVQ4FTgHWA31xJ4p7mdkQnLxFpNBFTzXh1aM9ZfHmc1OY+t531PH/PjzbQULNmCTVxUkQXWBmj5jZWjMrMLNJwJHAvyVdBQwEzpc0IeT2CyTNCxTKn5aUGfRZlsr4IEmfBmVVIJ/hiQGvHu0pixbZTbni9jPibUbKUVCYG7WkAgnlmHCaeFnAG+EVZjYXd8i2HvA8MNrM+oc02QknNbQbcBxwUnC9LJVxcGoR/wd0wMXce2LAq0d7ymK/Q3Yl3f/7qHSqQ8Q1EUg0x9QSWGVWalKR34M2kbjdzDaZ2a84BYhOMaiMA6w2s/fMbL2FhShGkvZ46I4XKjxIj8fj2R7yC/OillQg0faYlgMtJNUKUmCE0x4nENghQt2akNe5uLFFUxkHd3AsIpHUxX24uMfjiRcFhakxI4pGos2YpuEczDZJ+yT1xC3HvVWO/qKpjEPsSucej8cTVwqtMGpJBRLKMZnZFuACYKSkCwIZ9jqSjsAlnHrYzL4FtuCUx6P1F01l3FMBvHq0pyyat2rCrY9dGG8zUorCwoKoJRVIKMcEYGavAQOC8gvwB3AzcLOZFX0LvgwcLenTGLosS2Xc4/F4koaaEvyQaHtMAJjZNODoMuo/wOnjFaGw+mNCXpelMv40LoWwx+PxJDx5BakR3BCNhHRMiUx23T3ibYInQfnns4fG2wRPAjP2/Ipn2kmVGVE0vGPyeDyeJCFV9pCi4R2Tx+PxJAmpEnUXDe+YAEmNcSlA1kRt7PF4PHGippxjShrHFByQ3QQU4s4eGS7SbmgQLFER5uG0+L6pYD81ihnTf+Khe0fz3yfuibcpnmpGiMF/HUb7pl3JK8jl0anXs3zdouL6o3qeTe9ORwHw/aKpvPrtQ9TOqMslfUeSVbsh+QV5PPTxNazZ+Ee8hpCU5BekhhZeNBIuXDwKfcwsy8waAI1xmnrvSmpSwX6bRm/iCeXZp17itptGsiW3ZvyP4inJPh36kZlemxvePJUXvxrFmftdXVzXvEEb/rrzAG548zSuH3cKu7U5gHY77MKhXU9m/sqZDH/7TD6Z9zbH9jo3jiNITvwB2wTHzAqB0UADoBOApAsl/RjkcFohaVRRe0mDJf0iaY2kbyT1D67/EDSZKmlgdY8jWclu25oRo26KtxmeONGl5V78sOQTAH7+4wc67bhrcd2qnGXc/u65WPAlmZ6WQV5BLu/OeIbXv3sEgGZZrdiYu776DU9y8gpyo5ZUIGkdk6QGwNU4rbtZkg7AqYSfYmaNgKNwaTL+ImlHXI6nY8ysCfAI8JgkmVmvoMs+ZvZ82DO2EXEdccsoPNC3Xx8yMpJmJdhTydSrVb+EYym0AtLk1MQLLJ/1W9YCcMZfrmLBqp/4/c8FAJgVcsPRT3NkjzP4asGkarfbkxwk2zfLR5KKdv/ycGkqBpjZRknfAbub2WJJzXHpM9YD2bg9pALgn5JeBJ4CnghXEw8nkojr2k2/eW09T41nY+4G6mTWL34v0kqcsclMr8UFB93G5rwNPD6t5Mz6/94ZROtGHbm6/6Nc+tLh1WZzKpBfQw7YJtuM6ZAiMVYz29HMDjezooCFAmCopJXAFFy6CwFpZrYKlwW3IzAJN8u6NkiL4fF4ysmc5d+yR9uDAOjcvBeLVs8tUX/l4Q+zcNVsHvtkWPGS3vG7n8+BnY8FYHP+RgoLU2M/pDopsIKopTKQdJKknyVtkDRFUucy2h4s6Yeg7f8k7RtSlxkkav0j2EZ5WVKjaM9PthlTWQzBqY93NrM1gdNZAxAER6Sb2XGSMoB+wDhc4sGP42Svx5O0fD1/Ertl9+bmY19EEv/9+FqO7jmIZesWkqZ0urXah4z0Wuzetg8AL351Nx/NeY0LDx7BIV1OIk1pPDLl2jiPIvmoDmcuqQdOqq0/8CVwIzBOUk+zktEVkprhBLbPxX2n/gMYL6mTma0HbsMlgN0VF1X9Ei556z/LsiGVHFNDXIqLXEn1gBuARkAmLi/TJElHmdlHkopyMK0K/swlBrVyT0laZ7fkyWcfircZnjhgGI9PG17i2tLp84tfn/lkLyJx+4TzqtCq1KeawsXPAN41s08AJA0DLgb2w/2YD+VEYI6ZvRK8f1TSJcAASS/jHNChZvZH0NcgIGoUdbIt5ZXFKCAHt0z3Cy7T7ftAtyAt+3m4Dy0HeB24xMymB/c+gfPyXqPf4/EkLJW1lCcpI0grtE3BZWCYVdQ2yMQwD+gRoasSbQNmB213AeoD3STNCSYEtwJLo9mXNDMmMytzP8jMVgBHlFH/HPBcKXUXAt4peTyehCaWpTxJw4FhYZdvCoK5ijgYt98eiQ+AjWHXNuKcTDhZZbTdAbfPfzLQG0gHXgHuBs4vYwjJ45gShYbL6sXbBE+CkiqHGz2JSyzq4pGiiSO0mUxYuqAiJL0J1A27XA+3IhXOBrbdBqkHLMIldBUwLAhAQ9JtwPNEcUyptJTn8Xg8KU1+QUHUUgnMAroWvZGUDuzMtkt227QN6Bpc/xknIVc7pC6myZB3TB6Px5MkFBZa1FIJvIALXjhMUi3gJtze/ZcR2o4Dekg6IwgN/yduf3+8ma3F7effIqlpIHRwHfBiNAOS2jFJai7pKUnLgxj6XyWNkFQnhnsXSDopeH2kpN8CKaOjqt7y1OCH2TM468p/xdsMTxwQ4rwDb+LW48cyfMCztGzYrkT90T0Hcdvxr3Db8a9w0l4Xl6jbt8NhXNrXK6hsD9XhmIKgsLOA+3GRywcCxwZBEEh6RNKEoO1yXLbxy4HVuCW6Y8xsXdDdObhgiB+BubiZ1FZhxVJI9j2ml4AFQNfg7NIuwbUmRImTD+Nk4FMz+3vlm5iaPP7Ks7z1wXvUrRP1N4AnBdmn42HUSq/NdeNOoXPzXpy1/zXcOdHFDzVv0JYDOw9g6BsnU2iF/N9xL/LV/EksWj2Hc3pfR682B7Jg1U9xHkFyUli2WE2lYWav42Y7keouCHv/CbBnKW1zgIuCEjNJPWPCxdW/WpRHKQgL/w/B+SRJB0j6IpgJfS9pG/0TSU/jfh0cL+mX6jM9uWnXKpv7b7g93mZ44kS3lnvx3eJQEdeexXWrNvzOre+eWxwMkpGWSV7BFgDmLP+Ox6aFB4x5YqWwsDBqSQWS3TGNBZ4OJC+OldTMzKaa2VBJbYH3gPtwYYtXAS9L2jm0AzMbhIsSGW1mnarZ/qTl8L/2JTM92Sfcnu2lbmZWSRHXwhAR18J81m92OTfP3O9q5q+cVSzi+tkv7xJFotJTBvkFhVFLKpDsjmkwcCUuCuQ54A9J0yTtCZwOfG5mL5pZgZm9D0zArXnGRCR18ZvuHVEV4/B4kopNeTnUDRVx1bYirpf2HUXdzPrbKER4tp9qCn6IO0n9kzfQbRoDjAlCGnvhNtbeB94GDpK0NuSWDEpZNy2l/+GEnQconL8mNf7mPZ4KMHvZ/9i7fV8+/3VCRBHXq474LzN++4I3f3gsThamJpUUDp7wJK1jknQkLqyxjZltDCJGvpU0GJfu4lfgLTM7OeSedkQ+JObxeMrBV/MnsVubA7jluJeQxEMfX8sxPc8pFnHt3mpfMtNrsUc7J+L6wlejmLv8+zhb7UkWktYxAVOBdcDjkoaa2QJJLXB7SbNwTusKSUfjlvB2w82krsblY/JUkOyWrRl77xPxNsMTBwzjsU9KBjEsXftr8euBT/QMv6WYWb9/xazfv6oy21KZVFmqi0bS7jGZ2UZcfP0WYJqkDbhY+abAYWb2C3A8TrJ9DU6afZSZeafk8XiSkoKCgqglFUjmGRNmtpgyghnM7CPgL6XUdQh5PaiybfN4PJ7KpqbMmJLaMXk8Hk9NIlXCwaPhHVM5yW0ZLrrr8ThuPOmueJvgSXFS5QBtNLxj8ng8niShuiSJ4o13TB6Px5Mk1JQ9poSOypM0WdLjpdR9KOmjIF1vtH4ekRRRzljS3pJqxt92JfPj9B8ZPHhwvM3wJChzZy7ixoseibcZKYVXfkgMHgGekPTvIDwcgEDvrg/QycwWRuskXA3XU3Geeuopxr8znrp1/Z6bZ1vGPfcxU9/7ltp1a8XblJSipig/JPSMCZeEagNwYtj1wbhDsx0l5QAEGnlXFDWQ1FDSJkldJT0t6cHgem1JD0taK2kJcEL1DCW1aNu2LXePujveZngSlJbZTbny9jPjbUbKUVNmTAntmMwsH3gCGFR0TVIGcDbwcFjzMTjh1iJOAn40s9lh7Ybj0mV0BfbAHdL1lJN+/fqRkZHoE25PvNjvkJ6kZ6TH24yUo9AsakkFEtoxBYwG+khqH7w/GtiES2kRystAV0lF+efPwDmrcE4H7jCzZWa2ArihtAdHUhe/5ZZbKjQYj8fj2V5qyowp4X/ymtniII3v2cDNwHnAo2ZmkkLb/SlpHHC6pNG4WdFJEbpsBSwJeb+gjGcPJ0xdfPOmzanxN+/xeJKOgvya8fWTDDMmgP8CZ0tqDRyMW96LxBjg78ApwLtmtjpCm9+A9iHvsyvRTo/H46kyzKKXVCBZHNNEQMBI4HUzW1VKu0lAFnApkZfxAJ4GhkpqJ2kH3CzMsx1kZ2fz3LPPxdsMT4LSvNUO3P7YxfE2I6UoLIxeUoGkcExBQsDRwGlsG/QQ3u45oA4uai8St+L2p77Hpcf4tFKN9Xg8nirCCi1qSQWSwjEBmNkIM5OZfRFy7WMzywprd42ZNQ8i+oquDTKzi4PX+WZ2hZntYGYtzexGMxMej8eT4FTXjEnSSZJ+lrRB0hRJnctoe7CkH4K2/5O0b0hdB0njg+M5CyT9J5bnJ3zwQ6Jx3zcnR2/kqZFc3v3FeJvgSXEKCqp+RiSpB27Loz/wJS6n3ThJPYNVqdC2zXC57s7FnTv9BzBeUidgY1A3C2gHNAzqNpjZY2XZkDQzJo/H46npWGH0UgmcgQse+8TMcoFhuCCx/SK0PRGYY2avmFmemT0K/AEMAHbBZQ6/yMzWmdkS4Hbg/GgGeMfk8Xg8SUJBvkUtkc5fShoe2o+kDEmNIxWgG26WA4CZFQDzgB4RTCrRNmB20DYNKMSdOy0eAs5hlYl3TB6Px5MkxLLHZGbDg/340DI8rKuDgTWllCzcMlwoG4H6EUwqq+2coIySVF9SW+AKIKrAZlz2mCSNB+ab2SUh157EpUnfy8y+Da41AFYDB5jZVxV43t7A1z7IoXxYofHZ83+wevEW0jPEX89uQcMWW0U5v3jxD5b/vInMOu73Tb+LW6N08dlzy8lZmU9BvrH/aTuy405e6LUm8uPM6dz98AM8/dDoeJviCcPMJuOO4GyDpDfZ1nnUA3IiNN+A2zsKb7vIzPIlHQvcDywE5uOipjtGsy9ewQ8TcZtlAMhJOBwNfAEcA3wbVPXBefCvq9tADyz8LoeCPGPA0Hb88csmvnplBf0u3noeeeXCzRxxWRvqNNiqifbtmytp0ro2Bw1uxerFW1i9ZIt3TDWQJ58bw9vvvePV5yuZ6gh+wC3NFUm7ISkd2Jltl+yK2g4Ku9YVeF1SGtAYOM7M8oK+LgD+F82AeC3lvQfsGqxnAuyL88YP4DbNiugbtE2TNEzSQkmrJb0naRcoDkfMkfRYEJJ4YVkK4pLSJN0vabmkPyRNDNJoeMJYPm8TbXatB0DzTnVZuWBzcZ0VGuuW5/HpM8sZf/si5k77E4DfZm4kPUNMvGcJ349fRXaPenGx3RNf2ma34d7bR8bbjJSjmoIfXgAGSDpMUi3gJmAZLkIvnHFAD0lnSMqU9E+gJTA+iOB7CbhEjt2Ba4GHohkQF8dkZj/jpnZFyt4DgHdwM6ndJbUMrh8CvIv7YE4DDsNp3X0NvC+paM2zPrACaA48Q9kK4n8DDgW64CJNluLVHyKSt6mQzLpbZ0NKE4XBL7b8XKP7oY056NyWHHFZG376aC2rF29hS04BWzYWcMRlbWjbK4uvXlkRL/M9ceSwQw716vNVQEF+9FJRzGw6cBZuCW4V7vvz2CAIoijx6oSg7XLcatfluG2X84FjzGxd0F2RRNw6nND2jWb2TjQb4hn88B5wUPD6GJyHXQV8BRwdyAXtinNWZwG3mNlcM9uCC1/MxDmYIl40s1wzy6FsBfHNQFtcvH0HYLCZhabLKCZSdMukJ+dUzuiTgMy6aeRt3voTzAzS0t2ydHot0aNfEzJqp5FZJ43WXeuxeskWamel066XO/Pcrld9Vi3YEhfbPS8vIG4AABduSURBVJ5UpLrSXpjZ62bWzcwamNlBZjY3pO4CM+sf8v4TM9szaLtXmAjCt2b2l6BuFzMrTSquBPF0TBNx6SzaAp2AKcH1d4B+OKf1pZmtAVoQogIeTBEX4w5tFRGaYr1UBfHAW1+MW96bCcwONui2IVJ0y2H/6LIdQ01OWuxclyXTNwDwxy+baJK9NfBh3bJcxt++yEnt5xvL522iabvaJe5ZNncTjVv7DKYeT2VRTUt5cSeec+0PcWuZfwM+CGZC4BzTRcBK3DIewCJcJMc0KN6Ma09JZxT6U6FIQbxIB694x15SR+A7M/trEPV3IfCypEYhNniA9ntk8dusjYy/fRFmcOA5LZnx/hoaNs+k3e5Z7Lx/Q8bftoi0dLHz/g1pkl2bXkftwLQxy3k7uN5ncMvoD/J4PDGRKiKt0YibYzKz9ZK+Bi7DCasWXf9BUiFwPG6JD+Ap4HpJX+L2pm7AhTpOBJpG6P5pnIL4NFxQRegeUt+gri/O4a3FrX/mVd7oUgOliQPObFHiWuNWW2dAPY/cgZ5H7lCivnZWOode1Lpa7PMkNtmtWvPC/7d35vFaVVUf//6YMcEJzTCV7DXFpFktUyTCAqfUnFJLyhzQUtOSnC0z0SyHHFKK8E0JJ0wzEU29TDKLOABmKVEOLw4IYioC6/1jrYd7eHjuwAV6HnB9P5/zuefZZw9r73PuXmfvs9fag5s1c5M0k/XFSWtTVPvr5P24i4r7ysLvA/Y1sxnx+xdAe+ABXBFNBvqEcqukmC4GOuEexBfjnsl7x7Xf4wsfJkac2cCB5T6gkiRJao2lS6stwX8H2fqys9R/iUvH7p8NllQknbgmjdF2sw1X28C/+wldm+x/Zt3w4jrvSKDaI6YkSZKkmbxf5nVyxJSsFpIurOCHK0mAfD6SlpGKKVktJFn6IEwaIp+PpCWkd/EkSZKkpkjFlCRJktQUqZiSJEmSmiIVU7K6/KTaAiQ1TT4fySqTix+SJEmSmiJHTEmSJElNkYopSZIkqSlSMSWrhaRdJb1ebTmS2kHSLpLGxg7Sc2Nfs7RlSppNKqakxUg6DHesm5suJQBI2hDfuuZW3OHyl/GNPgdUU65k3SIVU9IiJP0MGAhcVG1ZkppiG2C8mV1jZkvN7FngLmCPKsuVrEOkYkpaynVm9llgWrUFSWoHM5tpZgeVfktqB/TDt6BJkmaRiilpEWb2YrVlSGobSe2B4cC7wLVVFidZh8htL5IkWeNI2hK4M372MbO3qilPsm6RI6YkSdYoknYGpgLPAr3N7LUqi5SsY6RiSpJkjSFpM3yl5jAz629m71ZbpmTdIxVTkiRrkmOADwEnS1pUOG6vtmDJukP6ykuSJElqihwxJUmSJDVFKqYkSZKkpkjFlCRJktQUqZiSJEmSmiIVU5IkSVJTpGJKkiRJaopUTEmSJElNkYopSZIkqSlSMSVJkiQ1RSqmJEmSpKZIxZQkSZLUFKmYkiRJkpoiFVOSJElSU6RiSpIkSWqKVExJkiRJTZGKKUmSJKkpUjElSZIkNUUqpiRJkqSmSMWUJEmS1BSpmJIkSZKaIhVTkiRJUlOkYkqSJElqilRMaxFJW0s6SdLekrYohG8n6XlJKoS1lTRH0kYN5HWhpBNXQ5a+ko5vafpVLGuopL5rKK85kjpUylPSjyXt2ow8+kuaK6lO0lhJoyVt2wJZtpM0W9JNq5p2Fcv5lKTz12YZzZChg6TvrkL84ZJ6rUV5ukmauLbyT2qLVExrl+7A8cDZwDalQDN7DvgHsFch7gHAw2a2YG0IYmb3m9mNayPvamFmg8xscjOjDzOzXma2J3AL8KMWFLkH8BczO6YFaZuNmT1uZj9dm2U0gy2BZiumJFmTpGJauzwGDAOmAE+UXRsMfKvw+zvAjQCSLpH0oKTHJP2+mEhSL0nDC79fjr9bSxoZo4KRkrYuS9df0qB485wg6TZJ0yRdXy60pB6SHom87pS0kaTWkn4raZSkJyT9LOJuHyOQCZIekrR5ZHOCpIejjF3L8u8Yb9gT4voXYsT4O0ljJI1rztt3aRQl6WOSxoccY8vrXoFNgHmRx96SJkXaEZI2jjYeKeluSU9KOkfSNvgLxqGSBjTQRr0ir7GSvinpqchzeOR7b9TvUUm9o/wnJP06yq8r5DO8KLCcayRNlvS4pK9F+C+jzEmSTi20y5+jnIPKZNor2ne0pCHR7ivdD+AcYCdJ54dMd0R9H5HUI8o5WdJ0SfcB/9PA/bkpnoPJknYsu95F0izJZw6ifgeFjA9He0yV9LGydHMkdYjzQZL6x/klUbcJkg5t6vlJahgzy6MKB9AOHzV1BD4ETIvwzsCZcd4KmAVsBVwInAj0AoYX8nk5/t4K9IvzLwO3lJXXHxgEdANeAzoBrYF/AluWxZ0I7BTnxwIXR7rvRlgH4NU4vxvoG+cHAF8BhgLnFsq9riz/HwCD4nx74DRgAHBphG0GPB3nc6K8oaVyCvkMBfoCJwNXAG2B3sDOFeo+F6gDpgJvAJ8EBDwPbBXxTgUujzaeCbQBPgAsKLZhI23UC5hRKHcO8Ok4vxw4Nc63inIVcXaP8FuAI8rvcVw7qBSGK9aLgP2AEZFPW2AS0CPa5QcRd7lMEe9vwBbx+yLguAbuRzdgYoRdCgwoXB8HfDDyah9lPwH0qnB/zo/zfYB7Kvwf3Ar0jHyejjY/Cega18/GlWRRnjlAhzgfFPelX6F9OgCPAxtX+/88j5YdbUiqgpktlvQn4EBgW2BIXHob2ELSH4FFwIb4P35DlL5T9QDOljQwwt5rJM3fzexNAEkv4f/IRboD18WLbFvgWeB1YBdJXwIW4h0JwA7AhKjTPZHnkcC0uP4ysEFZ/jsAIyPNs8CVkq4D9pS0W8RpI6lLI3Uo8jtgIHA/sADvzMoZZmY/Dvl6A3cCXwAWmtkLEWcM8HPgXuBJM1sCLJH0doX8KrURwDNl8Z4pxL8l6vyCpIVA6bvj9Pj7L1a+FyWK7TwfOE/Sj4Cx5r3xe/JvMDtVkKN0vjn+EnRbyN0ReBDowsr3o1shfQ+gt6TD4/emwEfxl4d3ASQ1NKX6cPx9FLhC0iHA9yLsDHzm4Bh86vAeM1si6QXgakmLcCU+voG8YcXn/7OS6uJ3W1yZPd5I2qRGyam86vJb4Bu4cro5wvoBW5vZN/AOtiP1/3wA7+CdC/IP+JtG+GxgoJn1Ak4Abm+kXGtCrmeAb0VeZ+IddX/gDTM7CvglsEFMwcwCdgl5jpL0/WaUUUyznaRhIf8fo8x+If/rTchZ4mt4B/3lSDewifj/wkesrwKdJX0owvfCRwFNyQ+V2whgWVm80u9ZwJ4AkrbCRz2vNbOsUvpSm20kaVSE7RFhbYHdqVeQRTlK568C/wa+FnJfjCuOSvdjGfX9w2zgikhzGP6sPgt8PKYBWwOfbkDuz8bfL+KK7A7zb329zGwa8FCk/Q7+/wCurL5tZv2BF1nx+Yf4H4jn71MFGR8JGXsDt+EzEsk6SI6YqoiZzZK0ITDT6hc9TMbfhsfgHdZzQNdCsqnAG5Im4R3K8xH+Q+D6mHvviE9LtZQBwP9KahMyHBtlDYvvD+/iHVNXfBHBDZLOBf4DHE19Z9QQNwBDJI3GpxNPA54EBkdYZ3z6b5lU3idVZCpwU8jQGp+aKudISZ8HluDTmCeamUk6DhghaRkwH1fAOzejzEpt1LWR+D/H63wIfn+Oj9FBc+oHcA/QR9I4/P/2J2Y2Mr5HTcAV7W1m9lhDeUZ7ngr8RVIrfOT7LXw0U34/5gHtJF2KK7DfyVd1dgYuNLNXJA2KtK8AbzUgd7/4HtYab9tymUzSHUAfMyspkpuBsZLeAv6Pldv1MuA+fEpvfoT9GeglaSw+y3CXmb0Zo/cNbT1b+LO+I58FSJIkWbNIGop/97m/2rIk6xY5lZckSZLUFDliSpIkSWqKHDGtRVTm+UFuQ3SJpJ0lbVxt+dYUYXvStSysraQ/yO1nJks6oEK6EatR5pVy26JVSbPco4Kk74UNzTGxInC1kbSNpP2bGXeVPCs0I786STtK2jS+qzTbM0ZZPj0k9Yzz4ZLaNRJ3pfveSNzltkerg9agV5GkdknFtHYp9/ywG26n8lN86e76wqn4R/EiRwOvmXta6AtcU57IzA5uaYFmdpqZzV3FNEWPCgcDh5nZTWZ2UkvlKKM3vvqsOawtzwqfwO3JsFXzjFHi68SSczM7wswWNxK30n1PktWn2oZU6/OB24ecia8iake9orq8Qtz9cA8RU3EPEK2AvXGjydG4IeXGuMHkKHyV1nR8afit+HLZkhHkTHzl27iI9wHcruNmfBXVJODwiFsHXAn8FV8RuG2Efx+3m3kUOCXChka+o3CDys8A++IGq5OBdoX6bAh0ivPNgOcq1LlkHHxSyDQBuLpCvItDjsn4kviS3DtGGz8QbXQjbqNFyPfrCK8DNoq2Gx73oCTzR6g33Kx0Dw4BHom2HBvl9cLtfu7GVxOeg686m40b8h5QJv/38GXZk4C/xLMwGF8Vd35Z3DrgKnwZ9d34assHQ65NWNHItwMwp6w9HsRX1B1PvQHyCGCviPe5yLczvqT6AeApfJXhVvhKt78Bu1Jv3LxzxHsImIEvS1/hvlPheSmrVymvraPt6uLv1sApwAURr320Y8U8qWBoncf6d1RdgDwMfPnvHOot8s/EjW4b8krwNK5oPk+9Tc5HgMcj7hygZ5xfBpweneMVEdYJX+7dJTqIIyP8YuDH+BvzOLyzbY13qjtEp3B2xD0O+E2c1wE7NlC3TnjHfmSFayXFNAXYJc4HAG3K4s3BjSXbAycUy8Q9PpwUYXtT31HPoRGPCoX03XAvDpXuQckN0QYRdgNwFM3wDFGQvRVwAdAqfo/CR1XdCIVYFr8OOCrO7y/U7Sbc3m15GVRWTMU6DsUVUz9gSIRdiyvgzwAHR1hX4Nk4vxBfSl9qww7A4UCPCDsSGFxWZsXnpcI97EAFDyW4wn0at1c6FH/OG3sGUzGt50faMdUGXYD5ZjYPwMwuk/uca8grwVNm9p6kN4B/mHuRmE+914D3zGxMnD+Kd0xL8FER5vYdM3HrfVjR88CW+BvytvgbMnjHsX2FuI1OW8l91t2F2yQNayTqt4EfSvoI/oZcbohzFO56ZkvCQ0GB7ninDT6iKdIcjwolVroHUYd5uI3UIrwTnhDxm/IMQeSzTNJi4I+Rx4dp3JMHuI9F8BHJzDgv3t8SzTWCGgX8QtKmuJHvKXhbnibpYHzk1phML+C2dW/jLxoLy6439LyUe8GACh5KzGy+pOm4sXB/3CPEJxrIM3kfkN+YaoN5wMbRcSDpamA7Wu6VoK2kT8b5F/G30aLngU54B1Eyzi3P75lI8yVzS/qh1DuhrVR20UsAUcYH8emfgWY2pEKaIsfhb+l74V4Adi/k0x5/i/4G8CWgv1bcsuIp3LUQ+AiyyKosOV3pHkjaC/gJPtr6Lu4uqqQMmtsOnwAONLPD8ampVpHHSnGbKfdyzx/4qKdJGcxsGe4R43rgT2a2FO/8J5jZ0XFNDaUHrsan2o7Bpy7L4zb2vJTTkIeSwbhhb0czm72KeSbrGTliqgHirfok3CJ/Kf6mPxnvsFvilQBgYKxamwuci3d2g8NzQEfcc8C8Sl4CzGyGpIeAcaEYJuNvzQ3xKO4F4StmVnIjdDb+lnuepPMirJ+ZVRpdPIlb+r8Z5UwqyPKupNfx6ba3cWVXXPQwCPiDpMNw9zWN+QhskAbuwRjcT9sEfMQ5H5/2er6BbJ4EzpH0mJmVvIP/HXhLUsnf20uRxwTCs4KZNeVCqcj9wIC4j9NYefTyD6CHpNPKwofgXkRKo44/A7+WdAQ+MlsS93oaPrqaVUh7M3B7jMr/jY8uIe477ri3uc9LRQ8lZjZa0o34dHKTz2C8QPzWVmMBTVK7pB3TeoikOfg3n3eqLcvaRtI+wCtmNkVSH/wbWO9qy5UkScvJEVOyrvM87udtCf6R/JQqy5MkyWqSI6YkSZKkpsjFD0mSJElNkYppPUDSBeH259FKLmgk7S9pinzL6eMirKN8S/Cxku6L5ekNxd004oyTbze+RYR/PeJOVv223v3DPU6dpImS3pFvK95Hvk32RMW27BH/qgivU2wSKHcdNDHKGyLfoqEUv5V82/MTm6jHUfKt6adIGlBIf5bqtxA/NsJ2irLGy13etInwH6h+2/ILIuwD0QZjJP1VvrcSkj4f8cYX4lZ0yxT1Gxt1HiVfwZgkSYlqG1LlsXoHvmT4YXwJ7zbAlLLrbfGVYZvghrhT8G2xT8f31QFfDn1VI3Evp96wtg++oVtr3Eh3ozh/BuhSVva1+L5D4Kvcdgo5x+HL1ffDV5m1wld6TY24dwH7xPktwP6FPH+Or9ArGYGuVI84fwnfRLFdoU698NVorXDPFKV0f6LeIHkovo35drgHiNYh83jctuY06rcL718o73HcLkz4XkGfxu2zrozrmwJz43w08Kk4PwH4VbWfozzyqKUjFz9UEfn21bfjneiHgZFmdk5ZnHvxTrTETFvRt9sewANmZsBcSW0kbW5mr8T17ribnvmR3zigZ6S7LOKMBM5rJO5OuNsd8A76GjNbKqm7+WZ3W+Ad+HK/apI+B3zczE6OoOl459wWNxRdGvmOMrezeVXSUklbluJKEm7Q+V7keQhuO1Pc36dSPcBtXjbCl3kLXy7/VXxJ9124S54fRdyvR33a4YanC3Cj3L7mNj+lHWLfMbMr5Tu2gr8IvCGpM9DeYqM7+e6yfXC7oTtKTRKyABxhZi/FeRvcNilJkiAVU/XphneYC3Cbjc+YWcnyHzPbr4n0nanfohvgTbxDfqVwfUGF68XwSmHF8Mdxx6DT4+8GIdsSueeAa3EfcMVdTM/GjVNLPIl7rXgNVxqzcWV8hqRrcJ9pH8dd/DwbeZ4b8tRJ2hl3h3MIcH5Z/cvrAW54Oy1kGmFmb0jqgnsT2A934XSPpB1DKW2Le8ZYAMwws/dwZSngF8B0M/tb1HuppIfxUd/eIUPRnuhNYDszWwTLDZrviPpQUkqSdsddRfUkSZLl5Dem6jPDzF6PN/NJuD+w5Ui6t/DNpk4rb9GwEB9VlOiEG0w2db0YXimsGH4J0E2+3Xs3fDQBgJmNwJ1/tsO36Ua+pccOZvZI4fdZ+Ajqo7jiOcPMHsCNWOtwH33TcMV1FbCnme2IG3D+MvLeCp+27A+cLt/+YKV6yL0t7Isrn27AFpIOjbxHmdliM3sGH6lsHvX4p5ltD/wG+FXI3QGfSuyEO5pdjrmt1J7AnY20W8kt0yPAH6zglknS4VHWvoXRbZIkpGKqBbpL2iCmh3aj3jca4CMmM+tVOMq3aBgPfDUWBWyDOwt9tXB9FrB9LGBoh7+dT4h0+0ScfrifuYbi9sQdd/bEv9eMl9RZ0mhJ7WMq7i18mo2IX/JxBu6xYVEc4FOXm0j6GPAvM/sicBGwzMzeAF6nfgTyIrCJmZ1pZrtZvXuaX5lv2V2pHguizLdD4c/DvzGNA/rK6YqPzl6TdI+kkkeEN4FlMVK6G39xOKEwpXeWpG9G3EXAUjNbCCyW9NFI91Xck0VFt0ySjsZHSr3M7DmSJFmBnMqrPovx70wfBO4wsxmrktjMpkkaiyuQVsDJAPLN4jY0sxslnY478myFe5l+QdL1uHPScSHDkeaOYSvF7Yi7HAJ3C3OsmS2UdAswRtJ7+PTczSHWDrj7m5KM70o6A3hA0jv4aKI/rjwukbsCeqckO+6XbrjcaHYx7pqpISrV42VJN+BTo4txNz1DzZ3d9sTd27QCTo5puUHA0Ij7nyj/QNw/YXtJ/aKss3DXPjfFir7W+AIHgBPx0VVr/JvfJElXsbJbpn1x33NzcXdTAKPN7IJG6pgk7yvSwLaKxOKH4WZW7nw0SZLkfUtO5SVJkiQ1RY6YkiRJkpoiR0xJkiRJTZGKKUmSJKkpUjElSZIkNUUqpiRJkqSmSMWUJEmS1BT/D7ClrwXu8joUAAAAAElFTkSuQmCC\n",
Hao-Ting's avatar
Hao-Ting committed
777 778 779 780 781 782 783 784
      "text/plain": [
       "<Figure size 432x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
Hao Ting Wang's avatar
Hao Ting Wang committed
785 786 787
    }
   ],
   "source": [
Hao-Ting's avatar
Hao-Ting committed
788
    "df_es_coef = MANOVA_with_fig(es, './reports/figures/univariate_es.png')"
Hao-Ting's avatar
Hao-Ting committed
789 790 791 792 793 794 795
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## MANOVA: average 0-back experience sampling scores"
Hao Ting Wang's avatar
Hao Ting Wang committed
796 797 798 799
   ]
  },
  {
   "cell_type": "code",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
800
   "execution_count": 15,
Hao Ting Wang's avatar
Hao Ting Wang committed
801
   "metadata": {
Hao-Ting's avatar
Hao-Ting committed
802
    "scrolled": true
Hao Ting Wang's avatar
Hao Ting Wang committed
803 804 805 806 807 808
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Hao-Ting's avatar
Hao-Ting committed
809 810 811 812 813 814
      "                  Multivariate linear model\n",
      "==============================================================\n",
      "                                                              \n",
      "--------------------------------------------------------------\n",
      "           x0           Value   Num DF  Den DF  F Value Pr > F\n",
      "--------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
815 816 817 818
      "          Wilks' lambda 0.9539 13.0000 164.0000  0.6095 0.8440\n",
      "         Pillai's trace 0.0461 13.0000 164.0000  0.6095 0.8440\n",
      " Hotelling-Lawley trace 0.0483 13.0000 164.0000  0.6095 0.8440\n",
      "    Roy's greatest root 0.0483 13.0000 164.0000  0.6095 0.8440\n",
Hao-Ting's avatar
Hao-Ting committed
819 820 821 822 823
      "--------------------------------------------------------------\n",
      "                                                              \n",
      "--------------------------------------------------------------\n",
      "           x1           Value   Num DF  Den DF  F Value Pr > F\n",
      "--------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
824 825 826 827
      "          Wilks' lambda 0.8380 13.0000 164.0000  2.4389 0.0048\n",
      "         Pillai's trace 0.1620 13.0000 164.0000  2.4389 0.0048\n",
      " Hotelling-Lawley trace 0.1933 13.0000 164.0000  2.4389 0.0048\n",
      "    Roy's greatest root 0.1933 13.0000 164.0000  2.4389 0.0048\n",
Hao-Ting's avatar
Hao-Ting committed
828
      "==============================================================\n",
Hao-Ting's avatar
Hao-Ting committed
829 830 831
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
832
      "Dep. Variable:       MWQ_Deliberate_0   R-squared:                       0.010\n",
Hao-Ting's avatar
Hao-Ting committed
833
      "Model:                            OLS   Adj. R-squared:                 -0.001\n",
Hao-Ting's avatar
Hao-Ting committed
834
      "Method:                 Least Squares   F-statistic:                    0.8998\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
835 836
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.409\n",
      "Time:                        11:22:01   Log-Likelihood:                -245.73\n",
Hao-Ting's avatar
Hao-Ting committed
837 838
      "No. Observations:                 178   AIC:                             497.5\n",
      "Df Residuals:                     175   BIC:                             507.0\n",
Hao-Ting's avatar
Hao-Ting committed
839 840 841 842 843
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
844 845 846
      "Intercept      -0.2098      0.073     -2.884      0.004      -0.353      -0.066\n",
      "component_1    -0.0263      0.041     -0.639      0.524      -0.107       0.055\n",
      "component_2    -0.0471      0.041     -1.153      0.250      -0.128       0.034\n",
Hao-Ting's avatar
Hao-Ting committed
847
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
848 849 850 851
      "Omnibus:                        7.208   Durbin-Watson:                   2.108\n",
      "Prob(Omnibus):                  0.027   Jarque-Bera (JB):                6.962\n",
      "Skew:                           0.423   Prob(JB):                       0.0308\n",
      "Kurtosis:                       3.474   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
852 853 854 855 856
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
Hao-Ting's avatar
Hao-Ting committed
857
      "Intercept   1.0    0.013247\n",
Hao-Ting's avatar
Hao-Ting committed
858
      "1           0.0    1.000000\n",
Hao-Ting's avatar
Hao-Ting committed
859
      "2           0.0    0.750905\n",
Hao-Ting's avatar
Hao-Ting committed
860 861 862 863
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
864 865 866
      "Dep. Variable:         MWQ_Detailed_0   R-squared:                       0.052\n",
      "Model:                            OLS   Adj. R-squared:                  0.041\n",
      "Method:                 Least Squares   F-statistic:                     4.766\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
867 868
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):            0.00965\n",
      "Time:                        11:22:01   Log-Likelihood:                -242.62\n",
Hao-Ting's avatar
Hao-Ting committed
869 870
      "No. Observations:                 178   AIC:                             491.2\n",
      "Df Residuals:                     175   BIC:                             500.8\n",
Hao-Ting's avatar
Hao-Ting committed
871 872 873 874 875
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
876 877 878
      "Intercept      -0.1402      0.071     -1.961      0.051      -0.281       0.001\n",
      "component_1    -0.0612      0.040     -1.514      0.132      -0.141       0.019\n",
      "component_2    -0.1056      0.040     -2.629      0.009      -0.185      -0.026\n",
Hao-Ting's avatar
Hao-Ting committed
879
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
880 881 882 883
      "Omnibus:                        0.700   Durbin-Watson:                   2.076\n",
      "Prob(Omnibus):                  0.705   Jarque-Bera (JB):                0.811\n",
      "Skew:                           0.073   Prob(JB):                        0.667\n",
      "Kurtosis:                       2.703   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
884 885 886 887 888
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
Hao-Ting's avatar
Hao-Ting committed
889 890 891
      "Intercept   0.0    0.154449\n",
      "1           0.0    0.395788\n",
      "2           1.0    0.027983\n",
Hao-Ting's avatar
Hao-Ting committed
892 893 894 895
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
896 897 898
      "Dep. Variable:          MWQ_Emotion_0   R-squared:                       0.006\n",
      "Model:                            OLS   Adj. R-squared:                 -0.006\n",
      "Method:                 Least Squares   F-statistic:                    0.5109\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
899 900
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.601\n",
      "Time:                        11:22:01   Log-Likelihood:                -242.56\n",
Hao-Ting's avatar
Hao-Ting committed
901 902
      "No. Observations:                 178   AIC:                             491.1\n",
      "Df Residuals:                     175   BIC:                             500.7\n",
Hao-Ting's avatar
Hao-Ting committed
903 904 905 906 907
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
908 909 910
      "Intercept      -0.0689      0.071     -0.964      0.336      -0.210       0.072\n",
      "component_1    -0.0224      0.040     -0.553      0.581      -0.102       0.057\n",
      "component_2     0.0348      0.040      0.867      0.387      -0.044       0.114\n",
Hao-Ting's avatar
Hao-Ting committed
911
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
912 913 914 915
      "Omnibus:                        4.886   Durbin-Watson:                   1.437\n",
      "Prob(Omnibus):                  0.087   Jarque-Bera (JB):                4.487\n",
      "Skew:                           0.373   Prob(JB):                        0.106\n",
      "Kurtosis:                       3.221   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
916 917 918 919 920 921 922 923 924 925 926 927
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0         1.0\n",
      "1           0.0         1.0\n",
      "2           0.0         1.0\n",
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
928
      "Dep. Variable:         MWQ_Evolving_0   R-squared:                       0.003\n",
Hao-Ting's avatar
Hao-Ting committed
929
      "Model:                            OLS   Adj. R-squared:                 -0.008\n",
Hao-Ting's avatar
Hao-Ting committed
930
      "Method:                 Least Squares   F-statistic:                    0.2920\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
931 932
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.747\n",
      "Time:                        11:22:01   Log-Likelihood:                -251.77\n",
Hao-Ting's avatar
Hao-Ting committed
933 934
      "No. Observations:                 178   AIC:                             509.5\n",
      "Df Residuals:                     175   BIC:                             519.1\n",
Hao-Ting's avatar
Hao-Ting committed
935 936 937 938 939
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
940 941 942
      "Intercept      -0.0440      0.075     -0.585      0.559      -0.193       0.104\n",
      "component_1    -0.0324      0.043     -0.762      0.447      -0.116       0.052\n",
      "component_2     0.0039      0.042      0.092      0.927      -0.080       0.087\n",
Hao-Ting's avatar
Hao-Ting committed
943
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
944 945 946 947
      "Omnibus:                        1.663   Durbin-Watson:                   1.815\n",
      "Prob(Omnibus):                  0.435   Jarque-Bera (JB):                1.265\n",
      "Skew:                          -0.156   Prob(JB):                        0.531\n",
      "Kurtosis:                       3.270   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
948 949 950 951 952 953 954 955 956 957 958 959
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0         1.0\n",
      "1           0.0         1.0\n",
      "2           0.0         1.0\n",
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
960 961 962
      "Dep. Variable:            MWQ_Focus_0   R-squared:                       0.016\n",
      "Model:                            OLS   Adj. R-squared:                  0.005\n",
      "Method:                 Least Squares   F-statistic:                     1.427\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
963 964
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.243\n",
      "Time:                        11:22:01   Log-Likelihood:                -248.13\n",
Hao-Ting's avatar
Hao-Ting committed
965 966
      "No. Observations:                 178   AIC:                             502.3\n",
      "Df Residuals:                     175   BIC:                             511.8\n",
Hao-Ting's avatar
Hao-Ting committed
967 968 969 970 971
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
972 973 974
      "Intercept      -0.2870      0.074     -3.893      0.000      -0.433      -0.141\n",
      "component_1    -0.0335      0.042     -0.803      0.423      -0.116       0.049\n",
      "component_2     0.0628      0.041      1.517      0.131      -0.019       0.145\n",
Hao-Ting's avatar
Hao-Ting committed
975
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
976 977 978 979
      "Omnibus:                        0.843   Durbin-Watson:                   2.044\n",
      "Prob(Omnibus):                  0.656   Jarque-Bera (JB):                0.888\n",
      "Skew:                           0.162   Prob(JB):                        0.641\n",
      "Kurtosis:                       2.878   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
980 981 982 983 984
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
Hao-Ting's avatar
Hao-Ting committed
985
      "Intercept   1.0    0.000423\n",
Hao-Ting's avatar
Hao-Ting committed
986
      "1           0.0    1.000000\n",
Hao-Ting's avatar
Hao-Ting committed
987
      "2           0.0    0.393455\n",
Hao-Ting's avatar
Hao-Ting committed
988 989 990 991
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
992
      "Dep. Variable:           MWQ_Future_0   R-squared:                       0.014\n",
Hao-Ting's avatar
Hao-Ting committed
993
      "Model:                            OLS   Adj. R-squared:                  0.003\n",
Hao-Ting's avatar
Hao-Ting committed
994
      "Method:                 Least Squares   F-statistic:                     1.274\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
995 996
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.282\n",
      "Time:                        11:22:01   Log-Likelihood:                -248.50\n",
Hao-Ting's avatar
Hao-Ting committed
997 998
      "No. Observations:                 178   AIC:                             503.0\n",
      "Df Residuals:                     175   BIC:                             512.5\n",
Hao-Ting's avatar
Hao-Ting committed
999 1000 1001 1002 1003
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
1004 1005 1006
      "Intercept       0.0140      0.074      0.190      0.850      -0.132       0.160\n",
      "component_1    -0.0189      0.042     -0.453      0.651      -0.101       0.064\n",
      "component_2    -0.0627      0.042     -1.511      0.133      -0.145       0.019\n",
Hao-Ting's avatar
Hao-Ting committed
1007
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
1008 1009 1010 1011
      "Omnibus:                        3.834   Durbin-Watson:                   2.024\n",
      "Prob(Omnibus):                  0.147   Jarque-Bera (JB):                3.389\n",
      "Skew:                          -0.312   Prob(JB):                        0.184\n",
      "Kurtosis:                       3.258   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
1012 1013 1014 1015 1016 1017 1018
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0    1.000000\n",
      "1           0.0    1.000000\n",
Hao-Ting's avatar
Hao-Ting committed
1019
      "2           0.0    0.397645\n",
Hao-Ting's avatar
Hao-Ting committed
1020 1021 1022 1023
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
1024 1025 1026
      "Dep. Variable:            MWQ_Habit_0   R-squared:                       0.017\n",
      "Model:                            OLS   Adj. R-squared:                  0.006\n",
      "Method:                 Least Squares   F-statistic:                     1.491\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
1027 1028
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.228\n",
      "Time:                        11:22:01   Log-Likelihood:                -247.79\n",
Hao-Ting's avatar
Hao-Ting committed
1029 1030
      "No. Observations:                 178   AIC:                             501.6\n",
      "Df Residuals:                     175   BIC:                             511.1\n",
Hao-Ting's avatar
Hao-Ting committed
1031 1032 1033 1034 1035
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
1036 1037 1038
      "Intercept      -0.0709      0.074     -0.964      0.336      -0.216       0.074\n",
      "component_1    -0.0199      0.042     -0.479      0.633      -0.102       0.062\n",
      "component_2    -0.0678      0.041     -1.639      0.103      -0.149       0.014\n",
Hao-Ting's avatar
Hao-Ting committed
1039
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
1040 1041 1042 1043
      "Omnibus:                        3.698   Durbin-Watson:                   1.967\n",
      "Prob(Omnibus):                  0.157   Jarque-Bera (JB):                3.592\n",
      "Skew:                           0.200   Prob(JB):                        0.166\n",
      "Kurtosis:                       3.569   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
1044 1045 1046 1047 1048
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
Hao-Ting's avatar
Hao-Ting committed
1049
      "Intercept   0.0    1.000000\n",
Hao-Ting's avatar
Hao-Ting committed
1050
      "1           0.0    1.000000\n",
Hao-Ting's avatar
Hao-Ting committed
1051
      "2           0.0    0.308935\n",
Hao-Ting's avatar
Hao-Ting committed
1052 1053 1054 1055 1056
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
      "Dep. Variable:           MWQ_Images_0   R-squared:                       0.000\n",
Hao-Ting's avatar
Hao-Ting committed
1057 1058
      "Model:                            OLS   Adj. R-squared:                 -0.011\n",
      "Method:                 Least Squares   F-statistic:                   0.03101\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
1059 1060
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.969\n",
      "Time:                        11:22:01   Log-Likelihood:                -250.14\n",
Hao-Ting's avatar
Hao-Ting committed
1061 1062
      "No. Observations:                 178   AIC:                             506.3\n",
      "Df Residuals:                     175   BIC:                             515.8\n",
Hao-Ting's avatar
Hao-Ting committed
1063 1064 1065 1066 1067
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
1068 1069 1070
      "Intercept       0.0154      0.075      0.207      0.836      -0.132       0.163\n",
      "component_1     0.0028      0.042      0.065      0.948      -0.080       0.086\n",
      "component_2    -0.0102      0.042     -0.243      0.809      -0.093       0.073\n",
Hao-Ting's avatar
Hao-Ting committed
1071
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
1072 1073 1074 1075
      "Omnibus:                        4.906   Durbin-Watson:                   2.214\n",
      "Prob(Omnibus):                  0.086   Jarque-Bera (JB):                4.930\n",
      "Skew:                          -0.405   Prob(JB):                       0.0850\n",
      "Kurtosis:                       2.907   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0         1.0\n",
      "1           0.0         1.0\n",
      "2           0.0         1.0\n",
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
1088 1089 1090
      "Dep. Variable:            MWQ_Other_0   R-squared:                       0.003\n",
      "Model:                            OLS   Adj. R-squared:                 -0.008\n",
      "Method:                 Least Squares   F-statistic:                    0.2665\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
1091 1092
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.766\n",
      "Time:                        11:22:01   Log-Likelihood:                -256.37\n",
Hao-Ting's avatar
Hao-Ting committed
1093 1094
      "No. Observations:                 178   AIC:                             518.7\n",
      "Df Residuals:                     175   BIC:                             528.3\n",
Hao-Ting's avatar
Hao-Ting committed
1095 1096 1097 1098 1099
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
1100 1101 1102
      "Intercept       0.1356      0.077      1.756      0.081      -0.017       0.288\n",
      "component_1    -0.0177      0.044     -0.406      0.686      -0.104       0.068\n",
      "component_2    -0.0256      0.043     -0.591      0.556      -0.111       0.060\n",
Hao-Ting's avatar
Hao-Ting committed
1103
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
1104 1105 1106 1107
      "Omnibus:                        3.665   Durbin-Watson:                   2.086\n",
      "Prob(Omnibus):                  0.160   Jarque-Bera (JB):                3.690\n",
      "Skew:                          -0.320   Prob(JB):                        0.158\n",
      "Kurtosis:                       2.705   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
1108 1109 1110 1111 1112
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
Hao-Ting's avatar
Hao-Ting committed
1113
      "Intercept   0.0    0.242276\n",
Hao-Ting's avatar
Hao-Ting committed
1114 1115 1116 1117 1118 1119
      "1           0.0    1.000000\n",
      "2           0.0    1.000000\n",
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
1120 1121 1122
      "Dep. Variable:             MWQ_Past_0   R-squared:                       0.017\n",
      "Model:                            OLS   Adj. R-squared:                  0.006\n",
      "Method:                 Least Squares   F-statistic:                     1.506\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
1123 1124
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.225\n",
      "Time:                        11:22:01   Log-Likelihood:                -256.11\n",
Hao-Ting's avatar
Hao-Ting committed
1125 1126
      "No. Observations:                 178   AIC:                             518.2\n",
      "Df Residuals:                     175   BIC:                             527.8\n",
Hao-Ting's avatar
Hao-Ting committed
1127 1128 1129 1130 1131
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
1132 1133 1134
      "Intercept       0.0277      0.077      0.359      0.720      -0.125       0.180\n",
      "component_1    -0.0101      0.044     -0.231      0.818      -0.096       0.076\n",
      "component_2    -0.0741      0.043     -1.710      0.089      -0.160       0.011\n",
Hao-Ting's avatar
Hao-Ting committed
1135
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
1136 1137 1138 1139
      "Omnibus:                        3.729   Durbin-Watson:                   2.023\n",
      "Prob(Omnibus):                  0.155   Jarque-Bera (JB):                3.779\n",
      "Skew:                          -0.347   Prob(JB):                        0.151\n",
      "Kurtosis:                       2.829   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
1140 1141 1142 1143 1144 1145 1146
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0    1.000000\n",
      "1           0.0    1.000000\n",
Hao-Ting's avatar
Hao-Ting committed
1147
      "2           0.0    0.267391\n",
Hao-Ting's avatar
Hao-Ting committed
1148 1149 1150 1151
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
1152 1153 1154
      "Dep. Variable:             MWQ_Self_0   R-squared:                       0.014\n",
      "Model:                            OLS   Adj. R-squared:                  0.002\n",
      "Method:                 Least Squares   F-statistic:                     1.221\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
1155 1156
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.297\n",
      "Time:                        11:22:01   Log-Likelihood:                -250.36\n",
Hao-Ting's avatar
Hao-Ting committed
1157 1158
      "No. Observations:                 178   AIC:                             506.7\n",
      "Df Residuals:                     175   BIC:                             516.3\n",
Hao-Ting's avatar
Hao-Ting committed
1159 1160 1161 1162 1163
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
1164 1165 1166
      "Intercept       0.0816      0.075      1.092      0.276      -0.066       0.229\n",
      "component_1     0.0148      0.042      0.351      0.726      -0.069       0.098\n",
      "component_2    -0.0644      0.042     -1.535      0.126      -0.147       0.018\n",
Hao-Ting's avatar
Hao-Ting committed
1167
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
1168 1169 1170 1171
      "Omnibus:                       14.671   Durbin-Watson:                   1.847\n",
      "Prob(Omnibus):                  0.001   Jarque-Bera (JB):               15.773\n",
      "Skew:                          -0.679   Prob(JB):                     0.000376\n",
      "Kurtosis:                       3.530   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
1172 1173 1174 1175 1176
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
Hao-Ting's avatar
Hao-Ting committed
1177
      "Intercept   0.0    0.828463\n",
Hao-Ting's avatar
Hao-Ting committed
1178
      "1           0.0    1.000000\n",
Hao-Ting's avatar
Hao-Ting committed
1179
      "2           0.0    0.379437\n",
Hao-Ting's avatar
Hao-Ting committed
1180 1181 1182 1183 1184
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
      "\n",
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
      "Dep. Variable:            MWQ_Vivid_0   R-squared:                       0.002\n",
Hao-Ting's avatar
Hao-Ting committed
1185 1186
      "Model:                            OLS   Adj. R-squared:                 -0.009\n",
      "Method:                 Least Squares   F-statistic:                    0.1952\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
1187 1188
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.823\n",
      "Time:                        11:22:01   Log-Likelihood:                -252.31\n",
Hao-Ting's avatar
Hao-Ting committed
1189 1190
      "No. Observations:                 178   AIC:                             510.6\n",
      "Df Residuals:                     175   BIC:                             520.2\n",
Hao-Ting's avatar
Hao-Ting committed
1191 1192 1193 1194 1195
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
1196 1197 1198
      "Intercept       0.0030      0.075      0.040      0.968      -0.146       0.152\n",
      "component_1     0.0056      0.043      0.131      0.896      -0.079       0.090\n",
      "component_2    -0.0261      0.042     -0.616      0.539      -0.110       0.058\n",
Hao-Ting's avatar
Hao-Ting committed
1199
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
1200 1201 1202 1203
      "Omnibus:                        0.559   Durbin-Watson:                   1.918\n",
      "Prob(Omnibus):                  0.756   Jarque-Bera (JB):                0.685\n",
      "Skew:                           0.046   Prob(JB):                        0.710\n",
      "Kurtosis:                       2.710   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
1204 1205 1206 1207 1208 1209 1210 1211 1212
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
      "Intercept   0.0         1.0\n",
      "1           0.0         1.0\n",
      "2           0.0         1.0\n",
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
Hao-Ting's avatar
Hao-Ting committed
1213
      "\n",
Hao-Ting's avatar
Hao-Ting committed
1214 1215
      "                            OLS Regression Results                            \n",
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
1216
      "Dep. Variable:            MWQ_Words_0   R-squared:                       0.017\n",
Hao-Ting's avatar
Hao-Ting committed
1217
      "Model:                            OLS   Adj. R-squared:                  0.006\n",
Hao-Ting's avatar
Hao-Ting committed
1218
      "Method:                 Least Squares   F-statistic:                     1.543\n",
Hao-Ting Wang's avatar
Hao-Ting Wang committed
1219 1220
      "Date:                Mon, 15 Jul 2019   Prob (F-statistic):              0.217\n",
      "Time:                        11:22:01   Log-Likelihood:                -249.08\n",
Hao-Ting's avatar
Hao-Ting committed
1221 1222
      "No. Observations:                 178   AIC:                             504.2\n",
      "Df Residuals:                     175   BIC:                             513.7\n",
Hao-Ting's avatar
Hao-Ting committed
1223 1224 1225 1226 1227
      "Df Model:                           2                                         \n",
      "Covariance Type:            nonrobust                                         \n",
      "===============================================================================\n",
      "                  coef    std err          t      P>|t|      [0.025      0.975]\n",
      "-------------------------------------------------------------------------------\n",
Hao-Ting's avatar
Hao-Ting committed
1228 1229 1230
      "Intercept      -0.1045      0.074     -1.410      0.160      -0.251       0.042\n",
      "component_1    -0.0733      0.042     -1.750      0.082      -0.156       0.009\n",
      "component_2     0.0094      0.042      0.226      0.821      -0.073       0.092\n",
Hao-Ting's avatar
Hao-Ting committed
1231
      "==============================================================================\n",
Hao-Ting's avatar
Hao-Ting committed
1232 1233 1234 1235
      "Omnibus:                        2.117   Durbin-Watson:                   2.216\n",
      "Prob(Omnibus):                  0.347   Jarque-Bera (JB):                2.141\n",
      "Skew:                          -0.259   Prob(JB):                        0.343\n",
      "Kurtosis:                       2.856   Cond. No.                         1.81\n",
Hao-Ting's avatar
Hao-Ting committed
1236 1237 1238 1239 1240
      "==============================================================================\n",
      "\n",
      "Warnings:\n",
      "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
      "           Sig.  p_adjusted\n",
Hao-Ting's avatar
Hao-Ting committed
1241 1242
      "Intercept   0.0    0.480810\n",
      "1           0.0    0.245756\n",
Hao-Ting's avatar
Hao-Ting committed
1243 1244
      "2           0.0    1.000000\n",
      "Bonferroni corrected alpha (0.05): 0.016666666666666666\n",
Hao-Ting Wang's avatar
update  
Hao-Ting Wang committed
1245 1246 1247 1248
      "\n"
     ]
    },
    {
Hao-Ting's avatar
Hao-Ting committed